Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Problem 1 Problem 1 Compute sample correlation coeeficient and the coefficients for the least-squares regression line Given the following data We want to predict the selling price of a house in...

1 answer below »

Problem 1
    Problem 1
        Compute sample co
elation coeeficient and the coefficients for the least-squares regression line
        Given the following data        We want to predict the selling price of a house in Newburg Park FL
                based on the distance the house lies from the beach.
        Distance from the beach, x (in miles)    Selling price, y (in thousands of dollars)
        6.2    302.7
        18.5    216.3
        8.5    250
        8.3    292.3
        4.1    308.5
        4.9    264.8
        11.6    227
        13.8    265.5
        13.5    196.6
        13.2    188
        10    274.4
        7.4    234.3
        6.2    270.8
        5.7    216.4
        10.9    197.3
        9.2    290.2
        What is the value of the slope
        What is the value of the y-intercept
        NOTE: Round answers to three decimal laces
Problem 2
    Problem 2
        Explained and unexplained variation and the least-squares regression line
        Given the following data:
        x    y
        107.4    125.7
        122.1    131.9
        127.4    123.1
        137    145.6
        147.7    141.6
        What is the equation for this sample?
        What is the variation in the sample y values that is not explained by the estimated linear relationship (SSE)?
        What is the proportion of the toal variation in the sample y values that is explained by the estimated linear relationship (r-squared)?
        For the data point (107.4,125.7) what is the residual?
Problem 3
    Problem 3
        Linear relationship and the sample co
elation coefficient
        Given the following four data sets and scatter plots.
        x    y                        u    v
        1    3.4                        1    10
        2    5.8                        2    9
        3    8.2                        3    8
        4    9.2                        4    7
        5    9.5                        5    6
        6    10.1                        6    5
        7    9.2                        7    4
        8    7.8                        8    3
        9    6.3                        9    2
        10    4.1                        10    1
        w    t                        m    n
        1    7.6                        1    3
        2    9                        2    4.1
        3    7.3                        3    3.6
        4    5.6                        4    5.3
        5    8.4                        5    5
        6    4.7                        6    7.2
        7    5                        7    6.3
        8    6.7                        8    7.8
        9    5.9                        9    7.2
        10    3.9                        10    7.9
        Answer the following questions: (by giving the 2 variables or the answer None)
        Which data set is there evidence of a strong nonlinear relationship between 2 variables?
        Which data set indicates the strongest negatibe linear relationship between 2 variables?
        Which data set has an apparent positive, but not perfect, linear relationship between 2 variables?
        Which data set indicates a perfect positive linear relationship between 2 variables?
1    2    3    4    5    6    7    8    9    10    3.4    5.8     XXXXXXXXXX     XXXXXXXXXX    9.5    10.1     XXXXXXXXXX    7.8    6.3     XXXXXXXXXX    1    2    3    4    5    6    7    8    9    10    10    9    8    7    6    5    4    3    2    1    1    2    3    4    5    6    7    8    9    10    7.6    9    7.3    5.6    8.4    4.7    5    6.7    5.9    3.9    1    2    3    4    5    6    7    8    9    10    3     XXXXXXXXXX    3.6    5.3    5    7.2    6.3    7.8    7.2    7.9    
Problem 4
    Problem 4
        Regression 2 Independent Variables
        Predicting job performance of auto mechanics based on mechanical aptitude test scores and personality testing that measures conscientiousness.
        Given the following data
        Y = job performance
        X1 = mechanical aptitude scores
        X2 = persomality test/conscientiousness measure
            Y    X1    X2
        1    1    40    25
        2    2    45    20
        3    1    38    30
        4    3    50    30
        5    2    48    28
        6    3    55    30
        7    3    53    34
        8    4    55    36
        9    4    58    32
        10    3    40    34
        11    5    55    38
        12    3    48    28
        13    3    45    30
        14    2    55    36
        15    4    60    34
        16    5    60    38
        17    5    60    42
        18    5    65    38
        19    4    50    34
        20    3    58    38
        What is the regression equation with the 2 idependent variables (x1, x2)?
        
        What is the co
elation coefficient?
Answered 1 days After Sep 20, 2022

Solution

Monica answered on Sep 21 2022
66 Votes
Problem 1
    Problem 1
        Compute sample co
elation coeeficient and the coefficients for the least-squares regression line
        Given the following data        We want to predict the selling price of a house in Newburg Park FL
                based on the distance the house lies from the beach.
        Distance from the beach, x (in miles)    Selling price, y (in thousands of dollars)
        6.2    302.7
        18.5    216.3
        8.5    250
        8.3    292.3
        4.1    308.5
        4.9    264.8
        11.6    227
        13.8    265.5
        13.5    196.6
        13.2    188
        10    274.4
        7.4    234.3
        6.2    270.8
        5.7    216.4
        10.9    197.3
        9.2    290.2
        What is the value of the slope
        What is the value of the y-intercept
        NOTE: Round answers to three decimal laces
Solution_1
            Distance from the beach, x (in miles)    Selling price, y (in thousands of dollars)
            6.2    302.7
            18.5    216.3
            8.5    250
            8.3    292.3
            4.1    308.5
            4.9    264.8
            11.6    227
            13.8    265.5
            13.5    196.6
            13.2    188
            10    274.4
            7.4    234.3
            6.2    270.8
            5.7    216.4
            10.9    197.3
            9.2    290.2
    Solution
        1)    Slope    -5.749
        2)    Intercept    304.313
            Slope and intercept are the coefficient of the least square regression line equation
solution_2
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.75
    R Square    0.56
    Adjusted R Square    0.41
    Standard E
or    7.54
    Observations    5
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    213.08    213.08    3.75    0.15
    Residual    3    170.47    56.82
    Total    4    383.55
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    72.10    31.93    2.26    0.11    -29.52    173.71    -29.52    173.71
    x    0.48    0.25    1.94    0.15    -0.31    1.27    -0.31    1.27
    Solution
    1)    Â  True, the variation in the sample y values that is not explained by the estimated linear regression. From the above table we can observed that sum of square e
or value is equal to 170.47
    2)    Â Â Â  The proportion of the total variation in the sample y values that is explained by the estimated linear relationship. From the above table...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here