Solution
David answered on
Dec 23 2021
NIPA
San Francisco State University
Michael Ba
ECON 312
Fall 2013
Problem set 1
Due Thursday, September 5, in class
Name (type)______________________________
Assignment Rules
1. Homework assignments must be typed. For instruction how to type equations and math objects please see notes “Typing Math in MS Word”.
2. Homework assignments must be prepared within this template. Save this file on your computer and type your answers following each question. Do not delete the questions.
3. Your assignments must be stapled.
4. No attachments are allowed. This means that all your work must be done within this word document and attaching graphs, questions or other material is prohibited.
5. Homework assignments must be submitted at the end of the lecture, in class, on the listed dates.
6. Late homework assignments will not be accepted under any circumstances, but the lowest homework score will be dropped.
7. The first homework assignment cannot be dropped.
8. All the graphs should be fully labeled, i.e. with a title, labeled axis and labeled curves.
9. In all the questions that involve calculations, you are required to show all your work. That is, you need to write the steps that you made in order to get to the solution.
10. This page must be part of the submitted homework.
1. Suppose that length of life in Japan,
X
, has exponential distribution:
)
(
~
EXP
X
. The pdf of X is given by:
otherwise
0
0
,
)
(
³
î
í
ì
=
-
x
e
x
f
x
a. What is the support of
X
?
The distribution is supported on the interval [0, ∞).
. Prove that indeed, the above function is a pdf (i.e. nonnegative on the entire support, and integrates to 1 over the entire support).
ò
¥
-
0
dx
e
x
ò
¥
-
=
0
dz
e
z
where
x
z
=
and
dx
dz
=
1
=
So, the function is a pdf.
c. Show that life expectancy in Japan is
1
)
(
=
X
E
. (Hint: use integration by parts).
[
]
1
1
1
)
(
0
0
0
=
+
-
=
=
=
¥
-
-
¥
-
¥
-
ò
ò
z
z
z
x
e
e
z
dz
e
z
dx
e
x
X
E
d. Show that the probability that a newborn will live until the age of 100 is
100
-
e
.
1 – F(100)= 1-P(X<100)
[
]
100
100
100
0
100
0
100
0
1
1
1
1
1
-
-
-
-
-
=
+
-
=
-
-
=
-
=
-
=
ò
ò
e
e
e
dz
e
dx
e
z
z
x
e. Suppose that only 5% of the newborns live more than the age of
*
x
. Show that
-
=
05
.
0
ln
*
x
.
P(X
*
x
) = 0.05
05
.
0
*
=
Þ
ò
¥
-
x
x
dx
e
05
.
0
*
ò
¥
-
=
Þ
x
z
dz
e
05
.
0
*
=
Þ
-
x
e
05
.
0
ln
*
-
=
Þ
x
2. Consider the random experiment of tossing two dice.
a. Write the sample space for this random experiment.
S = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
. Let X be a random variable, which records the maximum of the two dice. List all the possible values of X (i.e., describe the support of X).
X: 1, 2, 3, 4, 5, 6
c. Show the probability density function of X. The best way to do this is to create a table like this:
x
)
(
x
f
1
36
1
2
36
3
3
36
5
4
36
7
5
36
9
6
36
11
d. Calculate the expected value (mean) of X.
E(X) =...