Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Microsoft Word - ECON2016 Unit 4 and 5 Practice Questions.docx 1 Units 4 and 5 Additional Practice Questions Find additional practice questions for Units 4 and 5 in preparation for the graded quiz....

1 answer below »

Microsoft Word - ECON2016 Unit 4 and 5 Practice Questions.docx
     1    
Units    4    and    5    Additional    Practice    Questions    
Find additional practice questions for Units 4 and 5 in preparation for the graded quiz.
Solutions will not be posted but you can email me if you have any specific queries.     
    
Unit    4    –    Convexity    and    Concavity    
Question    1    
Classify    the    stationary    point(s)    of    each    of    the    following    functions    as    convex,    concave    
(strictly    or    weakly)    or    neither.    
(i)     
(ii)     
(iii)     
(iv)     
    
Question    2    
Show    that    the    Co
    –    Douglas    production    function ,    with    
    and         is    strictly    concave    for     .    
    
Unit    5    -    Unconstrained    and    Constrained    Optimization    
Question    1    
Find    the    global    maximum    and    minimum    values    of    each    function    and    indicate    where    
they    occur.    
(i)             subject    to     .    
(ii)             subject    to     .    
(iii)         subject    to     .    
     (iv)         subject    to     .    
    
Question    2    
Find    the    stationary    points    and    the    values    of    the    Lagrange    multipliers    for    the    
following    problem.        
(i) Min         subject    to         
(ii) Max         subject    to             
(iii) Max         subject    to         and     
    
Question    3    
Determine    whether    the    stationary    point    represents    a    maximum/minimum    
    subject    to         
    
Question    4    
Dell,    a    manufacturer    of    computers    and    laptops,    finds    that    it    takes         units    of    labour    
and     units    of    capital    to    produce     units    of    the    product.    If    a    unit    
of    labour    costs    $100,    unit    of    capital    $200,    and    $200,    000    is    budgeted    for    production,    
2
2
2
12121 ),( xxxxxxf --=
21
2
22
2
XXXXXXXXXX),( xxxxxxxxf -+++=
21
2
2
2
121 32),( xxxxxxf ++=
12333),( 221
23
22
2
121 +--+= xxxxxxxf
( ) ba 2121, xAxxxf =
1,0
ba 1<+ ba 0,0 21
xx
2121 43),( xxxxf += 11,10 21 ££-££ xx
523),( 22
2
121 ++= xxxxf 102,100 21 ££££ xx
2
2
2
121 ),( xxxxf += 41,31 21 ££-££- xx
21
2
2
2
XXXXXXXXXX),( xxxxxxxxf +--+= 10,10 21 ££££ xx
f (x1, x2 ) = 4x1x2 + 7x1x3 + 9x2x3 x1x2x3 = 2016
f (x1, x2, x3) = 3x
2
1x2x3 x1 + x2 + x3 = 32
XXXXXXXXXX),,( xxxxxxf ++= 2
2
2
2
1 =+ xx 132 =+ xx
f (x1, x2 ) = 20x1 − 4x1
2 + 9x1x2 − 6x
2
2 +18x2 x1 +3x2 = 64
1x
2x f (x1, x2 ) =100x1
0.75x2
0.25
     2    
determine    how    many    units    should    be    expended    on    labour    and    how    many    units    
should    be    expended    on    capital    in    order    to    maximize    production.    (You    MUST    justify    
that    the    stationary    point    you    found    does    indeed    maximize    the    given    function).        
    
Question    5    
Find    the    amount    of    capital    (K)    and    labour    (L)    that    should    be    employed    to    maximize    
output    (q)    given    the    following    Co
-Douglas    production    functions    and    constraints    
set    by    PK,    PL    and    budget    B:    
    
(You    MUST    justify    that    the    stationary    point    you    found    does    indeed    maximize    
the    given    function).        
    
Question    6    
Show    that    following    problem    is    a    convex    programming    problem    and    use    the    KKT    
conditions    to    find    the    optimal    solution.    
    
    
Question    7    
Consider    the    following    nonlinear    programming    problem    
    
    
    
Determine    whether         can    be    optimal    by    applying    the    KKT        
conditions.    
    
q(K,L) = K 0.4L0.6
PK = 8,PL = 6,B = 300
Maximize f (x1,x2 ) = 24x1 − x1
2 +10x2 − x2
2
subject to XXXXXXXXXXx1 ≤ 8
XXXXXXXXXXx2 ≤ 4
and XXXXXXXXXXx1 ≥ 0, x2 ≥ 0
0,0 XXXXXXXXXXand
3 XXXXXXXXXXsubject to
XXXXXXXXXXMaximize
21
21
3
22
3
1
2
11
³³
£+
-+-+=
xx
xx
xxxxxZ
( ) )2,1(, 21 =xx

ECON2016_u XXXXXXXXXXv1rec
UNIT 4

Convexity and Concavity
Overview
In this unit, we will use the Hessian matrix to solve determine the convexity and concavity
properties of a function of several variables. These properties are critical to the optimization
process.
Learning Objectives
By the end of this unit, you will be able to:
1. Identify the graphs of concave and convex functions of one variable.
2. Compute the Hessian matrix of functions of several variables.
3. Use the Hessian matrix to determine the convexity and concavity properties of a
given function of more than one variable.
This unit has one session as follows:
Session 4.1: Hessian Matrix
Readings & Resources
Note to Students: Sometimes hyperlinks to resources may not open when
clicked. If any link fails to open, please copy and paste the link in your
owser to view/download the resource.

Required Reading
Hoy, M., Livernois, J., McKenna, C., Rees, R., & Stengos, T XXXXXXXXXXMathematics for
economics. MIT Press.
Required Resources
Khan Academy: Concavity
https:
www.khanacademy.org/math/ap-calculus-a
ab-derivatives-analyze-
functions/ab-concavity/e
ecognizing_concavity
Khan Academy: Hessian Matrix
https:
www.khanacademy.org/math/multivariable-calculus/applications-of-
multivariable-derivatives/quadratic-approximations/a/the-hessian
Session 4.1
Concavity and Convexity
Introduction
This session focuses on computing the Hessian matrix of a function of several variables. We will
also use the Hessian Matrix to determine the convexity and concavity properties of a variety of
multivariate functions.
Preliminaries
Recall the types of functions:
One variable:     ?(?) =     ?' + 6? + 7    
Two variables:     ?(?, ?) = 6?? +    ?' −    2?/    
Three variables:         ?(    ?, ?, ?) =      ?/ +     6???' + 7??    a    
N variables:          ?2    ?3    ,?'    , ?/ ……… . ?67            or                ?(    ?    )                where    x    =    2    ?3    ,?'    , … . . ?67    
Notation:              ?;<     =             
=    >?        (@A,…….@B)
=@C
    
Example:
Let ?    2    ?3,?'7     =     ?3' +     6?3?' +    ?'/    . Then
?3 =     2?3 +     6?'        ,                        ?' =     6?3 + 3?''
?33 = 2 , ?3' = 6                                    ?'' =     6?'        , ?'3 =     6
If partial derivatives are continuous ?3' =     ?'3    
In general, ?;< =     ?<;
The Gradient Vector
The gradient vector ∆? =     



?3
?'


?/⎠


, consists of first order partial derivatives.
Example:
Find ∆? for ?2?3,?'7 = 4 +    5?3 +    6?'
First        ?3 =     5                                                                                            ?' =     6        
So                    ∆? =     O56P    
For 2nd order derivatives, we have the following notation:
∆'    ? =     R
?33 ?3'
?'3 ?''
S            for     n    =    2    
    
∆'    ? =    T
?33 ?3' ?3
?'3 ?'' ?'
?/3 ?/' ?
U            for     n    =    3    
    
∆'    ? =    V
?33 ?3' ?36
⋮ ⋮ ⋮
?63 ?6' …?66
W                for n variables.    


Concavity and Convexity
Recall what you learnt in your introductory calculus course. In Figure 4.1 below, we have a
polynomial graph with a concave and a convex portion as well as a point of inflection. These give
you an idea of what is meant by a function that is convex and one that is concave.

Figure 4.1
Now here in Figure 4.2 we have a fully concave function.

Figure 4.2
Any point ?Y between ??     and ?? (inclusive) can be written as
�̅� =     ??3     + (    1 −     ?)    ?' ,         ?    ?    [0,1] where 0 ≤ ? ≤ 1
Now ?    Y is between ?(?3)    and ?(?')
So ?̅ =     ?    ?(?3    ) + (    1 −     ?)    ?(?') ,         ?    ?    [0,1]
In terms of formal definitions:
The function ? is concave if:
?(�̅�) ≥     ?    ?(?3    ) + (    1 −     ?)    ?(?')
Where ?    Y =     ??3     + (    1 −     ?)    ?' and         ?    ?    [0,1]    
On the other hand, the function ? is convex if:
?(�̅�)     ≤     ?    ?(?3    ) + (    1 −     ?)    ?(?')
It is strictly concave if strict inequality holds when ?    ?    [0,1]    

Figure 4.3
As you will recall, to show convexity and concavity, we use the first and second derivatives
subject to specific conditions as shown below.

Figure 4.4

?f(?) > ? ?f(?) < ?
?ff(?) < ? ?ff(?) < ?

Figure 4.5
Strictly convex functions


?f(?) > ?, ?′′(?) < ? ?f(?) < ?,            ?′′(?) < ?
Figure 4.6
Strictly concave functions


Proving convexity and concavity can also be shown with functions requiring total differentials.
Let us recap functions of two variables to show this.
Definition
The first order total differential for the function ? = ?2?3,?'7        is
?? =     ?3            ??3, + ?'            ??'
The second order total differential for the function ? = ?2?3,?'7        is
?'? =     ?33        ??3' + 2    ?3'    ??3        ??' +        ?''        ??''
where ??'' =      (??;)'
Theorem
Given    the    function ? = ?2?3,?'7    . If ?'?     > 0 whenever at least one of ??3        ??    ??' is non-zero then
? = ?2?3,?'7 is a strictly convex function.
Let us now apply what we have reviewed to matrices, specifically the Hessian Matrix.
Recall:
Given ? = ?2?3,?'7        
                                                    ?'? =         ?33            ??3' + 2    ?3'    ??3        ??' +         ?''        ??''        
A function is strictly convex iff ?'? > 0 whenever at least one of ??3        ??    ??' is non-zero.
Example:
Show that ?2?3,?'7 = ?3' + ?''        is strictly convex.
First
?3 =     2?3    
?'y    2?'
?33 = 2
?3' = 0    
?'' =     2
?'3 = 0

Now ?'? = 2    ??3' + 2?'' > 0     if one of ??3    ???    ??' is non-zero so ? is strictly convex.


Theorem
The function ? = ?2?3,?'7        is
(Weakly) convex iff ?'? ≥ 0
(Weakly) concave iff ?'? ≤ 0
Example
Show that 2?3,?'7 = 5 −    (?3     + ?')' is concave
Now
?3     =     −2(?3     + ?')    
?'         =     −2(?3     + ?')    
?33 =     −2
?'' =     −2
?3' =     −2    
So ?'?     =     −2    ??3' − 4    ??3        ??' −     2??''
=    −2    (??3' +     2??3        ??' + ??'')
=    −2    (    ??3         + ??')'     ≤ 0,     therefore ? is concave
We want to extend the idea of concavity and convexity to ?    (?3    , ?' … . ?6)
Now ?? =      ?3            ??3, + ?'            ??'         + ⋯+ ?6            ??6 =     ∑ ?;6;y3     ??;
And ?'? =    ∑ ∑ ?;<    6;y3     6Or ?'? = ??~    ?    ?? where. ? =    V
?33         ⋯ ?36        
⋮ ⋱ ⋮
?63         … ?66        
W    , is
the Hessian matrix of ?
Answered 2 days After Mar 03, 2022

Solution

Komalavalli answered on Mar 05 2022
104 Votes
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here