Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Data Employee Starting Salary On Road Pct Chris Albright: Percentage of time on the road with a client State Univ Chris Albright: Whether the employee graduated from State University CIS Degree Chris...

1 answer below »

Data
    Employee    Starting Salary    On Road Pct
Chris Al
ight: Percentage of time on the road with a client
    State Univ
Chris Al
ight: Whether the employee graduated from State University
    CIS Degree
Chris Al
ight: Whether the employee got his/her degree in the computer information systems area (or a similar area)
    Stayed 3 Years
Chris Al
ight: Whether the employee stayed with the company for at least 3 years
    Tenure
Chris Al
ight: Number of months employee stayed with the company (for those who left before 3 years)
    1    38900    57%    Yes    Yes    No    11
    2    42300    68%    Yes    Yes    No    5
    3    39800    75%    No    Yes    No    21
    4    35700    29%    No    Yes    Yes    
    5    40400    71%    No    Yes    No    19
    6    36400    62%    No    Yes    No    18
    7    37300    41%    Yes    No    Yes    
    8    36600    37%    No    Yes    No    17
    9    34600    65%    No    Yes    No    20
    10    42300    53%    Yes    Yes    No    16
    11    37800    73%    No    Yes    Yes    
    12    39700    60%    No    Yes    No    12
    13    36100    56%    Yes    Yes    Yes    
    14    36100    42%    Yes    Yes    Yes    
    15    33800    35%    No    Yes    Yes    
    16    38900    36%    No    Yes    Yes    
    17    35500    50%    No    Yes    No    15
    18    37600    58%    No    Yes    Yes    
    19    38100    78%    Yes    Yes    Yes    
    20    38300    16%    No    No    Yes    
    21    34600    29%    No    Yes    Yes    
    22    36300    26%    No    Yes    Yes    
    23    37200    59%    Yes    Yes    No    14
    24    37700    55%    Yes    Yes    Yes    
    25    36600    45%    No    Yes    No    13
    26    41000    81%    Yes    Yes    No    9
    27    40800    111%    Yes    Yes    No    7
    28    36700    56%    Yes    Yes    Yes    
    29    37700    56%    No    Yes    No    22
    30    37700    42%    No    Yes    No    11
    31    39300    69%    Yes    Yes    No    16
    32    37500    50%    No    Yes    No    18
    33    40000    69%    Yes    Yes    No    9
    34    41500    64%    Yes    No    No    5
    35    39600    72%    No    Yes    No    18
    36    36900    42%    No    Yes    Yes    
    37    39500    62%    No    Yes    No    5
    38    37800    20%    No    Yes    No    23
    39    38600    57%    No    Yes    No    8
    40    40600    70%    Yes    Yes    Yes    
    41    41600    63%    Yes    Yes    Yes    
    42    40800    44%    No    No    Yes    
    43    36200    68%    No    Yes    No    31
    44    39600    59%    No    Yes    No    10
    45    36100    56%    Yes    Yes    Yes    
    46    36100    42%    No    Yes    Yes    
    47    39500    53%    Yes    Yes    No    17
    48    39100    38%    No    Yes    Yes    
    49    40300    53%    Yes    Yes    Yes    
    50    38800    78%    Yes    Yes    Yes    
    51    39400    34%    Yes    Yes    No    27
    52    38400    23%    No    Yes    Yes    
    53    35200    33%    No    Yes    Yes    
    54    36100    24%    No    No    Yes    
    55    37100    44%    No    Yes    Yes    
    56    37200    64%    Yes    Yes    No    23
    57    36800    46%    Yes    No    Yes    
    58    36500    27%    No    No    Yes    
    59    35900    29%    No    No    Yes    
    60    37900    76%    Yes    Yes    No    14
    61    37900    58%    No    Yes    No    26
    62    37900    28%    No    Yes    No    14
    63    36700    37%    No    Yes    Yes    
    64    37400    49%    No    Yes    No    19
    65    38200    62%    Yes    Yes    Yes    
    66    36600    51%    Yes    Yes    No    7
This is fictitious data.

5. This problem illustrates an interesting variation of simple random sampling.
a. Open a blank spreadsheet and use the RAND() 
function to create a column of 1000 random numbers. Don’t freeze them. This is actually
a simple random sample from the uniform distribution between 0 and 1. Use the COUNTIF function to count the number of values between
0 and 0.1, between 0.1 and 0.2, and so on. Each such interval should contain about 1/10 of all values. Do they? (Keep pressing the F9 key to see how the results change.) 

. Repeat part a, generating a second column of random numbers, but now generate the first 100
as uniform between 0 and 0.1, the next 100 as uniform between 0.1 and 0.2, and so on, up to
0.9 to 1. (Hint: For example, to create a random number uniformly distributed between 0.5 and 0.6, use the formula =0.5+0.1*RAND(). Do you see why?) Again, use COUNTIF to find the number of the 1000 values in each of the intervals, although there shouldn’t be any surprises this time. Why might this type of random sampling be preferable to the random sampling in part a? (Note: The sampling in part a is called Monte Carlo sampling, whereas the sampling in part b is basically Latin Hypercube sampling, the form of sampling we advocate in Chapters 15 and 16 on simulation.) 


4. The file P08_06.xlsx contains data on repetitive task times for each of two workers. John has been doing this task for months, whereas Fred has just started. Each time listed is the time (in seconds) to perform a routine task on an assembly line. The times shown are in chronological order.
a. Calculate a 95% confidence interval for the mean time it takes John to perform the task. Do the same for Fred. 

. Do you believe both of the confidence intervals in part a are valid and/or useful? Why or why not? Which of the two workers would you rather have, assuming that task time is the only issue? 


Data
    Observation    John    Fred
    1    66.4    75.6
    2    63.8    75.1
    3    69.3    74.6
    4    64.2    76.1
    5    55.7    71.6
    6    72.5    73.7
    7    66.2    75.8
    8    64.0    81.8
    9    68.3    73.3
    10    66.1    73
    11    64.3    77.8
    12    67.1    74.8
    13    70.1    61.3
    14    65.7    69.7
    15    63.0    68.7
    16    59.0    76.1
    17    59.1    77.7
    18    65.9    71
    19    67.8    71.6
    20    77.0    62.3
    21    65.4    66.4
    22    70.5    78.3
    23    65.2    70.9
    24    73.3    70
    25    63.2    70.9
    26    65.6    70
    27    63.2    66.5
    28    62.7    71.9
    29    61.1    67.8
    30    65.2    70.1
    31    64.6    72.1
    32    70.0    70.7
    33    65.8    60.3
    34    68.2    65.7
    35    70.2    68.6
    36    68.8    70.4
    37    58.5    61.4
    38    63.8    62.7
    39    64.0    64
    40    68.5    69.5
    41    69.0    62.3
    42    56.8    66.1
    43    64.8    62.1
    44    60.1    68
    45    66.8    60.6
    46    73.0    64.7
    47    66.0    60.6
    48    62.5    62.3
    49    69.7    59.1
    50    65.8    60.8
    51    65.2    68
    52    69.6    61.6
    53    64.8    58.3
    54    70.5    55.8
    55    61.3    67.8
    56    65.8    64.1
    57    67.9    63.9
    58    68.8    60.2
    59    64.1    62.3
    60    60.5    61.1
    61    63.6    63.4
    62    67.6    64.5
    63    66.4    58.5
    64    64.1    60.1
    65    72.1    62.9
    66    66.6    57.2
    67    66.0    63.5
    68    71.9    65.7
    69    65.6    64.7
    70    58.8    57.4
This is fictitious data.

Demand for systems analysts in the consulting

industry is greater than ever. Graduates with a combination of business and computer knowledge— some even from liberal arts programs—are getting great offers from consulting companies. Once these people are hired, they frequently switch from one company to another as competing companies lure them away with even better offers. One consulting company, D&Y, has collected data on a sample of systems analysts with undergraduate degrees they hired several years ago. The data are in the file C08_02.xlsx. The variables are as follows:
· Starting Salary: employee’s starting salary at D&Y 

· On Road Pct: percentage of time employee has 
spent on the road with clients 

· State Univ: whether the employee graduated from State University (D&Y’s principal source of recruits) 

· CIS Degree: whether the employee majored in Computer Information Systems (CIS) or a similar computer-related area 

· Stayed 3 Years: whether the employee stayed at least three years with D&Y 

· Tenure: tenure of employee at D&Y (months) if he or she moved before three years
· 
D&Y is trying to learn everything it can about retention of these valuable employees. You can help by solving the following problems and then, based on your analysis, presenting a report to D&Y. 

· 1. Although starting salaries are in a fairly na
ow band, D&Y wonders whether they have anything to do with retention.
· B. Calculate a 95% confidence interval for the mean starting salary of all employees who stay at least three years with D&Y. Do the same for those who leave before three years. Then calculate a 95% confidence interval for the difference between these means.
c. Among all employees whose starting salary is below the median ($37,750), calculate a 95% confidence interval for the proportion that stay with D&Y for at least three years. Do the same for the employees with starting salaries above the median. Then calculate a 95% confidence interval for the difference between these proportions.
2. D&Y wonders whether the percentage of time on the road might influence who stays and who leaves. Repeat the previous problem, but now do the analysis in terms of percentage of time on the road rather than starting salary. (The median percentage of time on the road is 54%.)
3. Find a 95% confidence interval for the mean tenure (in months) of all employees who leave D&Y within three years of being hired. Why is
 it not possible with the given data to calculate a confidence interval for the mean tenure at D&Y among all systems analysts hired by D&Y?
4. State University’s students, particularly those in its nationally acclaimed CIS area, have traditionally been among the best of D&Y’s recruits. But are they relatively hard to retain? Calculate one or more relevant confidence intervals to help you make an argument one-way or the other
Answered Same Day Feb 15, 2021

Solution

Pooja answered on Feb 18 2021
156 Votes
Sheet1
    data1    data2        Lower     Upper    Fi        Lower     Upper    Fi
    0.9351226925    0.0521471854        0    0.1    100        0    0.1    100
    0.4385002275    0.0027762973        0.1    0.2    74        0.1    0.2    100
    0.1764116984    0.070129585        0.2    0.3    106        0.2    0.3    100
    0.5628888615    0.0169041651        0.3    0.4    120        0.3    0.4    100
    0.410462853    0.0373278505        0.4    0.5    102        0.4    0.5    100
    0.5050020096    0.0177970997        0.5    0.6    89        0.5    0.6    100
    0.7144712225    0.094609953        0.6    0.7    98        0.6    0.7    100
    0.0352439805    0.0029190154        0.7    0.8    121        0.7    0.8    100
    0.0903578517    0.0700250317        0.8    0.9    93        0.8    0.9    100
    0.0757099794    0.000130778        0.9    1    97        0.9    1    100
    0.8402559354    0.0140442727            SUM    1000            SUM    1000
    0.4874254505    0.027808006
    0.9167671622    0.0132949771                        this type of random sampling is preferable to the random sampling. This is a type of stratified sampling. This has reliable samples and includes all varieties in form of...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here