1)
Null hypothesis, ho:Â an average price is 1200 ($000). V/s Alternative Hypothesis, h1:Â an average price is not 1200 ($000),
Mean= 321,858
sd= sqrt(var) 49578.87486
u= 1,200,000
n= 50.00
alpha= 5%
Critical value, z(a/2)
z(0.05/2)
1.960
Test statistic, z = (mean-u)/(sd/sqrt(n))
= (321858-1200000)/(49578.8748627181/sqrt(50))
-125.2429
P-value
2*(1-P(z<|z|)
2*(1-P(z
normsdist(abs(-125.2429))
0.0000
With z=125.24, p<5%, i reject null hypothesis and conclude that an average price is not 1200 ($000), hence i can say that average prices have recently changed. Darlington, R. B., & Hayes, A. F. (2016).Â
2)
a) Intercept, bo = 317992.4. The initial price is $317992.4 when size is zero.
Slope, b1 = 1.48. As the value of size increases by 1 unit. There is a 1.48$ increase in price.
)Â Regression output:
SUMMARY OUTPUT
Â
Â
Regression Statistics
Multiple R
0.102367
R Square
0.010479
Adjusted R Square
-0.01014
Standard E
o
49829.51
Observations
50
Â
ANOVA
Â
Â
Â
Â
Â
Â
df
SS
MS
F
Significance...