Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

STRUCTURAL ENGINEERING LABORATORY Important: ? It is the students’ responsibility to read and comprehend the information contained in this document including relevant theories that covered in previous...

1 answer below »
STRUCTURAL ENGINEERING LABORATORY Important: ? It is the students’ responsibility to read and comprehend the information contained in this document including relevant theories that covered in previous units. ? The practical work will be carried out in group work format; however, the report must be submitted by each student (individual report). ? Students’ responsibility to wear suitable personal safety equipment for the laboratory work and follow the instruction given by technical staffs during the experiment. As a general rule, anyone without covered footwear will not allow into the laboratory. ? If you are aware that you may not able to attend any of the scheduled laboratory classes, you must inform the lecturer as soon as possible. Whenever possible, such students will be allowed to do the testing with other groups. UNSYMMETRICAL BENDING This experiment is designed to assist students to understand the basic concepts of the strength of materials studied in ENEC12012: Stress Analysis. THEORY: Understanding of unsymmetrical bending is important in most of the structural design problems. All relevant theories are covered in the unit. Please refer the relevant sections (Bending II). Reference: Prescribed Textbook. Important Definition: Principal Axes – For a given area A and a given origin O, there are two axes (say X & Y) about which the moments of inertia are, respectively, greater and less than about any other axes through origin O. There two axes are called principal axes, the corresponding moments of inertia are principal moments of inertia (where IXY =0).
Document Preview:

Structural Engineering Laboratory Unsymmetrical Bending STRUCTURAL ENGINEERING LABORATORY Important: ? It is the students’ responsibility to read and comprehend the information contained in this document including relevant theories that covered in previous units. ? The practical work will be carried out in group work format; however, the report must be submitted by each student (individual report). ? Students’ responsibility to wear suitable personal safety equipment for the laboratory work and follow the instruction given by technical staffs during the experiment. As a general rule, anyone without covered footwear will not allow into the laboratory. ? If you are aware that you may not able to attend any of the scheduled laboratory classes, you must inform the lecturer as soon as possible. Whenever possible, such students will be allowed to do the testing with other groups. UNSYMMETRICAL BENDING This experiment is designed to assist students to understand the basic concepts of the strength of materials studied in ENEC12012: Stress Analysis. THEORY: Understanding of unsymmetrical bending is important in most of the structural design problems. All relevant theories are covered in the unit. Please refer the relevant sections (Bending II). Reference: Prescribed Textbook. Important Definition: Principal Axes – For a given area A and a given origin O, there are two axes (say X & Y) about which the moments of inertia are, respectively, greater and less than about any other axes through origin O. There two axes are called principal axes, the corresponding moments of inertia are principal moments of inertia (where I =0). XY Last Update: June 2017 Page 1 of 11Structural Engineering Laboratory Unsymmetrical Bending METHODOLOGY: Experimental initial set-up Figure 1: Full experiment set-up in the structures frame Figure 2: Unsymmetrical bending experiment Visually inspect all parts (including electrical leads) for...

Answered Same Day Dec 27, 2021

Solution

Robert answered on Dec 27 2021
126 Votes
UNSYMMETRICAL BENDING
1. Rectangular Section:
a. Head angle 0 degree:
Head
Angle: 0
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.26 0.51 0.544 -0.177
200 0.71 0.85 1.103 -0.099
300 1.17 1.15 1.640 0.014
400 1.63 1.49 2.206 0.099
500 2.03 1.91 2.786 0.085

y = 0.0056x - 0.0094
-0.500
0.000
0.500
1.000
1.500
2.000
2.500
3.000
0 100 200 300 400 500 600
U
y = 0.0004x - 0.1104
-0.200
-0.150
-0.100
-0.050
0.000
0.050
0.100
0.150
0 100 200 300 400 500 600
V
. Head angle 22.5 degree:
Head
Angle:
22.5
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.40 0.13 0.375 0.191
200 1.58 0.42 1.414 0.820
300 2.50 0.58 2.178 1.358
400 3.52 0.75 3.019 1.959
500 4.30 0.94 3.705 2.376




y = 0.0078x - 0.1626
-0.500
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
0 100 200 300 400 500 600
U
y = 0.0051x - 0.1485
-0.500
0.000
0.500
1.000
1.500
2.000
2.500
3.000
0 100 200 300 400 500 600
V
c. Head angle 45 degree:
Head
Angle:
45
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.51 0.25 0.537 0.184
200 2.28 0.76 2.150 1.075
300 4.05 1.20 3.712 2.015
400 6.81 1.69 6.010 3.620
500 8.06 2.03 7.135 4.264



y = 0.0153x - 0.5751
-2.000
0.000
2.000
4.000
6.000
8.000
0 100 200 300 400 500 600
U
y = 0.0093x - 0.4667
-1.000
0.000
1.000
2.000
3.000
4.000
5.000
0 100 200 300 400 500 600
V
d. Head angle 67.5 degree:
Head
Angle:
67.5
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 1.18 0.68 1.315 0.354
200 2.59 1.58 2.949 0.714
300 4.30 2.73 4.971 1.110
400 5.92 3.95 6.979 1.393
500 6.80 4.43 7.941 1.676

y = 0.0168x - 0.1684
-2.000
0.000
2.000
4.000
6.000
8.000
10.000
0 100 200 300 400 500 600
U
y = 0.0034x + 0.0249
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000
0 100 200 300 400 500 600
V
e. Head angle 90 degree:
Head
Angle:
90
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.63 0.54 0.827 0.064
200 2.53 2.43 3.507 0.071
300 3.69 3.62 5.169 0.049
400 5.55 5.55 7.849 0.000
500 6.97 7.06 9.921 -0.064




y = 0.0207x - 0.6209
-2.000
0.000
2.000
4.000
6.000
8.000
10.000
12.000
0 100 200 300 400 500 600
U
y = -0.0002x + 0.0579
-0.080
-0.060
-0.040
-0.020
0.000
0.020
0.040
0.060
0.080
0 100 200 300 400 500 600
V
f. Head angle 112.5 degree:
Head
Angle:
112.5
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.54 0.71 0.884 -0.120
200 1.13 1.59 1.923 -0.325
300 1.93 2.92 3.429 -0.700
400 3.71 5.99 6.859 -1.612
500 4.62 7.07 8.266 -1.732

y = 0.0174x - 0.7798
-2.000
0.000
2.000
4.000
6.000
8.000
10.000
0 100 200 300 400 500 600
U
y = -0.0039x + 0.2168
-2.000
-1.500
-1.000
-0.500
0.000
0.500
0 100 200 300 400 500 600
V
g. Head angle 135 degree:
Head
Angle:
135
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.39 0.79 0.834 -0.283
200 0.83 2.09 2.065 -0.891
300 1.31 3.45 3.366 -1.513
400 1.84 4.83 4.716 -2.114
500 2.40 5.91 5.876 -2.482

y = 0.0121x - 0.2138
-1.000
0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
0 100 200 300 400 500 600
U
y = -0.0053x + 0.1094
-3.000
-2.500
-2.000
-1.500
-1.000
-0.500
0.000
0.500
0 100 200 300 400 500 600
V
h. Head angle 157.5 degree:
Head
Angle:
157.5
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.22 0.76 0.693 -0.382
200 0.52 1.35 1.322 -0.587
300 0.79 2.06 2.015 -0.898
400 0.98 2.92 2.758 -1.372
500 1.25 3.61 3.437 -1.669



y = 0.0069x - 0.0152
-0.500
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
0 100 200 300 400 500 600
U
y = -0.0033x + 0.0125
-2.000
-1.500
-1.000
-0.500
0.000
0.500
0 100 200 300 400 500 600
V
i. Head angle 180 degree:
Head
Angle:
180
degrees
Load (g) Left Dial
Right
Dial U V
0 0.00 0.00 0.000 0.000
100 0.42 0.21 0.445 0.148
200 0.80 0.62 1.004 0.127
300 1.20 1.04 1.584 0.113
400 1.62 1.39 2.128 0.163
500 2.00 1.69 2.609 0.219



y = 0.0053x - 0.0387
-0.500
0.000
0.500
1.000
1.500
2.000
2.500
3.000
0 100 200 300 400 500 600
U
y = 0.0003x + 0.0482
0.000
0.050
0.100
0.150
0.200
0.250
0 100 200 300 400 500 600
V
Table 6
Loading Angle
(deg) dU/dP (mm/g)
dV/dP
(mm/g) dU/dP (m/N) dV/dP (m/N)
0 0.0056 0.0004 0.000570846 4.07747E-05
22.5 0.0078 0.005 0.000795107 0.000509684
45...
SOLUTION.PDF

Answer To This Question Is Available To Download