Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Problem 1. Define Fourier transform of function and Fourier inverse transform as: 8 F ( ? ) = ( ) j t f t e dt - ? ? -8 1 8 j t ; ( ) f t ( ) 2 F e d ? = ? ? ? p -8 Prove the following theorems: Name...

1 answer below »
Problem 1. Define Fourier transform of function and Fourier inverse transform as:
8
F ( ? ) = ( ) j t f t e dt - ? ?
-8
1 8 j t ; ( ) f t ( ) 2 F e d ? = ? ? ? p -8
Prove the following theorems:
Name of Theorem signal Fourier Transform Superposition (a1f1(t)+a2f2(t)) (a1F1(?)+a2F2(?)) Time Delay (f(t-t0)) F(?)exp(-j?t0) Time Reversal (Here, f(t) is real.) (f(-t)) F(-?)=F*(? ) Scale (f(at)) F(?/a)/|a| Frequency Translation (f(t)exp(j?0t)) F(?-?0) Convolution 8 ? - f 1 ( t ) f 2 ( t t ) d t -8 F1(?)F2(?) Multiplication (f1(t) f2(t)) 8 F ? w F w dw XXXXXXXXXX ? - 2 p -8 Parseval 8 * ? f 1 ( t ) f 2 ( t ) dt -8-8 8 * 1 ( ) ( ) ? F ? F ? d ? 1 2 2 p
Problem 2. Prove the following theorems:
System Function
Input
Output
Time Domain Description
h(t): impulse response
x(t)
8
y ( t ) = ? x (t ) h ( t -t )dt
-8
Problem 3. A pulse train with N half sine pulse as
1 ? p f t - g t nT g t N sin( ) t 0
Find the Fourier transform of f(t)
Frequency Domain Description
H(?): transfer function
X(?)
Y(?)=X(?)Y(?)
Document Preview:

Problem 1. Define Fourier transform of function and Fourier inverse transform as: 8 8 1 -jt? jt? F? = f()te dt; f()tF=?ed? () () ?? -8 2p -8 Prove the following theorems: Name of Theorem signal Fourier Transform Superposition (a f (t)+a f (t)) (a F (?)+a F (?)) XXXXXXXXXX Time Delay (f(t-t )) F(?)exp(-j?t ) 0 0 * F(-? )=F (? ) Time Reversal (Here, f(t) is (f(-t)) real.) Scale (f(at)) F(?/a)/|a| Frequency Translation (f(t)exp(j?t)) F(?-? ) 0 0 8 Convolution F (?)F (?) 1 2 ff ()tt (t- )dt 12 ? -8 8 Multiplication (f (t) f (t)) 1 2 1 F()?-wF(w)dw 12 ? 2p -8 8 8 Parseval 1 * * F()?Fd (?? ) ft ()f ()tdt 12 12 ?? 2p -8-8 Problem 2. Prove the following theorems: Time Domain Description Frequency Domain Description System Function h(t): impulse response H(?): transfer function Input x(t) X(?) 8 Output Y(?)=X(?)Y(?) yt ()=- x(tt )h(t )dt ? -8 Problem 3. A pulse train with N half sine pulse as N-1 sin(ptt ) 0<1>

Answered Same Day Dec 23, 2021

Solution

Robert answered on Dec 23 2021
124 Votes
Sol: (1) Superposition property:
We know that Fourier transform is given by,
    ,j tF f t e dt



 
Replace       1 1 2 2. by ,f t a f t a f t we get
      
      
      
       
       
     
1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
1 1 1 2
1 1 1 2
. by ,
,
,
,
,
,
j t
j t j t
j t j t
j t j t
f t a f t a f t
F a f t a f t e dt
F a f t e a f t e dt
F a f t e dt a f t e dt
F a f t e dt a f t e dt
F a F a F

 
 
 




  




 

 
 
 
 
 
 

 
 
 
 
 


 
 

Hence it shows that,
     1 1 1 2F a F a F   
Time delay property:
We know that inverse Fourier transform is given by,
   
1

2
j tf t F e d 



 
Substituting 0t t t  in above equation, we get
     
   
   
   
0
0
0
0
0
0
0
0
1

2
1

2
1

2
j t t
j tj t
j t j t
j t
f t t F e d
f t t F e e d
f t t F e e d
f t t F e


 

 

 

 


 








 
 
    
 




Hence it shows that,
    00
j t
f t t F e
  
Time Reversal property:
We know that Fourier transform is given by,
     
       
 
,
,
,
j t
j t
j t
F f t f t e dt
F f t f t e dt
f t e dt








  



   
    
 




Replacing t by t , we get
     
 
     
,
,
,
j t
j t
f t f t e dt
f t e dt
f t f



 







     
 
    


F
F

Hence it shows that,
      ,f t f     F
Scale property:
Here consider only 0,a  because if use 0,a  then proof will be change.
So we use the modulus.
We know that Fourier transform is given by,

   
     
,
,
j t
j t
F f t e dt
F f at f at e dt











   



Let ,at x
Now differentiate on both sides,
,
,
,
at x
adt dx
dx
or dt
a




Now,
     
 
   
,
1
,
1
,
j t
x
i
a
F f at f at e dt
f x e dx
a
F f at F
a a










   

 
     
 


Hence it shows that,
...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here