Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Sheet1 Starting Weight Final Weight Weight Loss 282 282 Determine for weight loss column 280 278.5 Sample Mean: 188 179.5 Null Population Mean: 273 267 Sample Standard...

1 answer below »
Sheet1
    Starting Weight    Final Weight    Weight Loss
    282    282            Determine for weight loss column
    280    278.5            Sample Mean:
    188    179.5            Null Population Mean:
    273    267            Sample Standard Deviation:
    201    194            Sample Size:
    180    171            Standard E
or:
    308    302.5            CI Lower Limit
    219    213.5            CI Upper Limit
    196    193
    181    180            Perform Hypothesis Test
    195    187            T-Statistic:
    248    244            T-critical Value(s)
    276    275.5            Reject the Null Hypothesis?
    213    209
    204    203.5
    270    270
    303    293.5
    263    257
    294    293
    277    270
    191    189.5
    184    175
    245    242.5
    198    196.5
    296    287
    196    194.5
    296    295
    239    229
    286    285
    232    226
    190    190
    218    217.5
    280    272
    314    304.5
    227    223
    285    279
    191    191
    188    181
    298    290
    296    292.5
A company wants to (cheaply) test the effects of a weight loss drug they're developing. They claim that the drug will help any person who is overweight lose 5 pounds in a week. They decide to conduct a hypothesis test at the 99% significance level to further strengthen their claim. Thus they decide to compensate a group of 40 people who are overweight to take this drug for a week and come back for a weight in.
They decided to proceed with a hypothesis test and they want to disprove the null hypothesis that their drug does not help people who are overweight with weight loss (that is, m=0)
Part A: State the null hypothesis and alternative hypotheses for this particular test.
Part B: Use the data given to determine the following statistical measures and find the confidence interval at 99% for the average weight loss in one week. Is a 5 pounds loss contained within this confidence interval? If so, does that mean that customers can expect to lose 5 pounds on this drug?
Part C: Perform a hypothesis test! Which type of tailed-test will you use? Find the t-statistic for the data and determine whether to reject the null hypothesis. Hint: the critical value of the t-distribution with 39 degrees of freedom is approximately XXXXXXXXXXIf you have two critical values, separate them with commas and list your positive value first in the T-Critical Value(s) cell.
Part D: Were you able to reject the null hypothesis at 99% significance? If so, interpret the significance of this rejection. Does it provide sufficient evidence to prove that their drug helps their customers lose 5 pounds in one week? If you think this is insufficient evidence, describe how you would change the experiment to make it more meaningful.
Answered 1 days After Nov 09, 2022

Solution

Divya V answered on Nov 10 2022
57 Votes
Final
    Starting Weight    Final Weight    Weight Loss=Starting Weight - Final weight
    282    282    0        Determine for weight loss column
    280    278.5    1.5        Sample Mean:    4.425
    188    179.5    8.5        Null Population Mean:    0
    273    267    6        Sample Standard Deviation:    3.3789506792
    201    194    7        Sample Size:    40
    180    171    9        Standard E
or:    0.5342590124
    308    302.5    5.5        CI Lower Limit    2.9782729795
    219    213.5    5.5        CI Upper Limit    5.8717270205
    196    193    3
    181    180    1        Perform Hypothesis Test
    195    187    8        T-Statistic:    8.2824994946
    248    244    4        T-critical Value(s)    2.4258414052
    276    275.5    0.5        Reject the Null Hypothesis?    Yes, Null hypothesis rejected
    213    209    4
    204    203.5    0.5
    270    270    0
    303    293.5    9.5
    263    257    6
    294    293    1
    277    270    7
    191    189.5    1.5
    184    175    9
    245    242.5    2.5
    198    196.5    1.5
    296    287    9
    196    194.5    1.5
    296    295    1
    239    229    10
    286    285    1
    232    226    6
    190    190    0
    218    217.5    0.5
    280    272    8
    314    304.5    9.5
    227    223    4
    285    279    6
    191    191    0
    188    181    7
    298    290    8
    296    292.5    3.5
A company wants to (cheaply) test the effects of a weight loss drug they're developing. They claim that the drug will help any person who is overweight lose 5 pounds in a week. They decide to conduct a hypothesis test at the 99% significance level to further strengthen their claim. Thus they decide to compensate a group of 40 people who are overweight to take this drug for a week and...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here