Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Microsoft Word - GEOG1106_Lab7_WaterBudget.docx Name: Date: Water Budget Lab Questions ***Please submit only this document at the end of the lab period*** INSTRUCTIONS: Please read the lab...

1 answer below »
Microsoft Word - GEOG1106_Lab7_WaterBudget.docx
Name:      Date:     
Water Budget Lab Questions
***Please submit only this document at the end of the lab period***
INSTRUCTIONS: Please read the lab reader before beginning this exercise. The following lab questions will be based upon the material given in the lab reader. You will need a calculator for this exercise. You will also need colored pencils for this lab.
Part 1: Water Budge Calculation
1. [2.5] When there is a deficit in precipitation, where must the water for evapotranspiration come from?
2. [2.5] While raining, what happens to precipitation when it gets to the soil after field capacity is reached?
3. [20] Using the Table 1 and the formulas listed in Part III of the reader, please complete the table below. Hint: begin with the Ending Storage (E.S.) for May (note: the E.S. for December will ca
y over to January in this exercise).
(
PHYSICAL GEOGRAPHY
LABORATORY
)
(
1
)
Table 1. Water budget in Dallas, TX
    Water Balance for Dallas, TX
    
    J
    F
    M
    A
    M
    J
    J
    A
    S
    O
    N
    D
    T (°C)
    5
    7
    12
    16
    21
    26
    28
    28
    24
    21
    12
    4
    P (mm)
    64
    49
    76
    113
    149
    109
    77
    87
    91
    97
    66
    61
    PE (mm)
    5
    10
    31
    62
    105
    152
    177
    171
    117
    87
    26
    8
    P – PE
(mm)
    
    
    
    
    
    
    
    
    
    
    
    
    I. S.
(mm)
    
    
    
    
    150
    150
    
    
    
    
    
    
    E. S.
(mm)
    
    
    
    150
    150
    
    
    
    
    
    
    
    Δ ST
(mm)
    
    
    
    
    
    
    
    
    
    
    
    
    AE (mm)
    
    
    
    
    
    
    
    
    
    
    
    
    Surplus (mm)
    
    
    
    
    
    
    
    
    
    
    
    
    Deficit (mm)
    
    
    
    
    
    
    
    
    
    
    
    
4. [10] Complete the following using the Water Balance for Dallas, TX using the Table 1 that you just completed.
Total AE (mm) =      Total Surplus (mm) =              Total Deficit (mm) =         
Total P (mm) = Total AE + Total Surplus. What is Total P?      Total PE (mm) = Total AE + Total Deficit. What is Total PE?         
5. [2.5] Which months had moisture surplus?
6. [2.5] Which months had moisture deficits?
7. [7.5] Using the chart below and the information from the Water Balance for Dallas, TX please plot the following variables:
Precipitation (P)
Potential Evapotranspiration (PE) Actual Evapotranspiration (AE).
Use a different color or style (pattern) of line to connect the annual data for each variable.
8. [10] Using the P, PE, and AE data that you plotted in Question 7, please shade and label the following polygons (spaces):
Moisture Surplus (P > PE)
Soil Moisture Utilization (AE > P) Moisture Deficit (PE > AE)
Soil Moisture Recharge after a period of deficit (P > PE).
Use a different color or style (pattern) to shade each polygon.
9. [2.5] Give the graph an appropriate tile and legend.
10. [5] When are the wet and dry seasons in Dallas (i.e. which month gets the most/least precipitation)?
Wet Season:      Dry Season:     
11. [5] How do these wet and dry seasons co
espond with the months of surplus deficit?
12. [2.5] What is the relationship between temperature and potential evapotranspiration?
Using the Water Balance for Washington, D.C. provided on the reader, complete the following questions.
13. [5] When are the wet and dry seasons in Washington, D.C. (i.e. which month gets the most/least precipitation)?
Wet Season:      Dry Season:     
14. [5] How do these wet and dry seasons co
espond with the months of surplus deficit?
15. [2.5] What is the relationship between temperature and actual evapotranspiration?
16. [15] Compare and contrast the local water balance of Dallas, Texas and Washington,
D.C. Name, at least, one difference or similarity (temporally, quantitatively, etc.) with respect to ALL of the following: soil moisture surplus, deficit, recharge, and utilization. Use the table below:
    Water Surplus
    
    Water Deficit
    
    Soil Moisture and Aquifer Recharge
    
    Soil    Moisture Utilization
    

Microsoft Word - GEOG1106-Lab7_Reader.docx
Reader:
The Water Budget
Learning Outcomes: The purpose of this lab is to be able to identify and key soil-water budget components and to be able to calculate and plot the soil-water budget for a selected location. The lessons learned from this laboratory could, in the future, by applied by the student to water resource analyses of different hydro-systems including watersheds, reservoirs and regions as open systems with inputs, outputs and storages of water.
Materials: Pencil, colored pencils, lab handout, simple calculator.
Part I. What is the water budget?
Water is not always naturally available when and where it is needed. Hence, humans must rea
ange water resources. The maintenance of a houseplant, the distribution of local water supplies, and i
igation program on a farm, the rea
angement of river flows — all involve aspects of the water balance and water-resource management.
The water budget is an accounting of the incoming and outgoing components of water from a control volume (e.g. a watershed, a soil column, a farm, a lake, etc). Such a budget can be established for any given area on the Earth’s surface
— a continent, nation, region, or field. For a soil-water budget, it is important to measure all the precipitation input and its distribution to satisfy the “demands” of plants (transpiration), evaporation, runoff, soil moisture, groundwater, water bodies or snow (ice) storage in the area considered. Such a budget can examine any time frame, from minutes to years.
When there is not snow/ice or ponded water storage, then the only water storage occurs into the soil. So, think of a soil-water budget as a money budget: precipitation income must be balanced against expenditures of evaporation, transpiration, and runoff. Soil-moisture storage acts as a savings account, accepting deposits and withdrawals of water. Sometimes all expenditure demands are met, and any extra water results in a surplus. At other times, precipitation and soil moisture income are inadequate to meet demands, and a deficit, or water shortage, results. The water balance describes how the water supply is expended. Think of precipitation as “income” and evapotranspiration
(
PHYSICAL

GEOGRAPHY

LABORATORY
)
(
1
)
as “expenditure.” If income exceeds expenditures, then there is a surplus to account for in the budget. If income is not enough to meet demands, then we need to turn to savings (a storage account – if available) to meet these demands. When savings are not available, then we must record a deficit of unmet demand.
To understand the water-balance methodology and “accounting” or “bookkeeping” procedures, it is essential to understand the terms and concepts used in simple water-balance equations
Part II. Definitions
Precipitation (P) – rain, snow, sleet, or hail – the moisture supply.
Potential evapotranspiration (PE) – the water loss from a hypothetical, homogeneous, vegetated area that never suffers from a lack of water; the amount of water that would evaporate and transpire through plants if the moisture was available i.e. unlimited water availability in and on the ground).
Actual evapotranspiration (AE) –actual amount of evaporation and transpiration that occurs – the actual satisfied demand that is limited by water availability in and on the ground for evaporation and transpiration processes.
Soil moisture deficit – the amount of unsatisfied potential evapotranspiration; the amount of demand that is not met either by precipitation or by soil moisture storage – the moisture shortage. In mathematical terms it is Deficit = PE-AE
Soil moisture surplus – the amount of moisture that exceeds potential evapotranspiration, when soil moisture storage is at field capacity (full) – the moisture oversupply
Soil moisture storage change (∆ST) – the use (decrease) or recharge (increase) of soil moisture – the moisture savings.
Field capacity – the maximum amount of water the soil can hold against the pull of gravity (varies with soil types, but we will use 150 mm in this exercise) – field capacity can never exceed soil moisture storage value.
Part III. Formulations and Example
Calculating the soil-water budget is simply an accounting task. We simply have to keep track of the amount of water “income” and water “expenditures.” Below are the steps you need to follow to determine the soil-water budget for a given location. For application of the formulas, please refer to the soil moisture retention, water budget table and budget plot for Washington D.C. shown below.
1. (P-PE): Calculate the difference between precipitation (P) and potential evapotranspiration (PE) for each month and record the value in the table.
2. Initial storage (I.S.): is the previous month’s ending storage (E.S.)
Start computing these values at the end of a wet month (May in Dallas, December in Washington, for example). Use one of the following to complete the initial and ending storage values.
A. If P is less than PE, then use the soil moisture retention table (Table 1) to “count down” the P-PE value in the table.
Example: June P-PE = -43. So, start at 150 in the table and count 43 values down to 112 and enter it for June‘s ending storage value. Then, July P-PE = XXXXXXXXXXSo, start at 112 and count 100 values down to 57 and enter it for July’s ending storage.
B. If P is greater than PE, then initial storage + (P-PE) = ending storage.
When field capacity is reached, both the initial and ending storage values remain at 150 mm as long as (P-PE) is greater than or equal to 0.
3. Storage change, ∆ ST = absolute value of (initial storage – ending storage).
4. Actual evapotranspiration (AE): Use one of the following to calculate AE
A. If (P-PE) is greater than 0, then AE = PE
B. If (P-PE) is less than 0, then AE = P + ∆ST
5. Surplus and Deficit: Use one of the following to calculate.
A. If (P-PE) is less than 0, then deficit = PE – AE
B. If initial storage (IS) is at field capacity, then surplus = (P - PE)
C. If (P-PE) is greater than 0, initial storage is less than at field capacity, and ending storage is at field capacity, then surplus = (P - PE) – ∆ ST
D. If A, B, or C are not met then recharge is taking place (there is no surplus or deficit). Place an R in the surplus and deficit blank for that month
Table 1: Soil Moisture Retention Table
    150
    149
    148
    147
    146
    145
    144
    143
    142
    141
    140
    139
    138
    137
    136
    135
    134
    133
    132
    131
    131
    130
    129
    128
    127
    127
    126
    125
    124
    123
    122
    122
    121
    120
    119
    118
    117
    116
    115
    114
    114
    113
    113
    112
    111
    111
    110
    109
    108
    107
    107
    106
    106
    105
    104
    103
    103
    102
    101
    100
    100
    99
    98
    97
    97
    97
    96
    95
    94
    93
    93
    92
    92
    91
    90
    90
    89
    89
    88
    87
    87
    86
    86
    85
    84
    84
    84
    83
    83
    82
    82
    81
    81
    80
    79
    79
    78
    77
    77
    76
    76
    76
    75
    75
    74
    74
    73
    72
    72
    71
    71
    71
    70
    70
    69
    69
    68
    68
    67
    67
    66
    66
    66
    65
    65
    64
    64
    63
    63
    62
    62
    62
    61
    61
    60
    60
    60
    59
    59
    58
    58
    58
    57
    57
    56
    56
    55
    55
    54
    54
    54
    53
    53
    53
    52
    52
    52
    52
    51
    51
    51
    51
    50
    50
    50
    49
    49
    48
    48
    47
    47
    47
    47
    46
    46
    46
    45
    45
    45
    44
    44
    44
    44
    43
    43
    43
    42
    42
    42
    41
    41
    41
    41
    40
    40
    40
    40
    39
    39
    39
    39
    38
    38
    38
    37
    37
    37
    37
    36
    36
    36
    36
    35
    35
    35
    35
    35
    34
    34
    34
    34
    34
    33
    33
    33
    33
    33
    32
    32
    32
    32
    31
    31
    31
    31
    31
    30
    30
    30
    30
    30
    29
    29
    29
    29
    29
    28
    28
    28
    28
    28
    27
    27
    27
    27
    27
    26
    26
    26
    26
    26
    26
    25
    25
    25
    25
    25
    24
    24
    24
    24
    24
    24
    23
    23
    23
    23
    23
    23
    23
    22
    22
    22
    22
    22
    22
    22
    22
    21
    21
    21
    21
    21
    20
    20
    20
    20
    20
    20
    20
    20
    19
    19
    19
    19
    19
    19
    19
    18
    18
    18
    18
    18
    18
    18
    18
    18
    17
    17
    17
    17
    17
    17
    17
    17
    17
    17
    16
    16
    16
    16
    16
    16
    16
    16
    16
    16
    15
    15
    15
    15
    15
    15
    15
    15
    15
    14
    14
    14
    14
    14
    14
    14
    14
    14
    14
    14
    13
    13
    13
    13
    13
    13
    13
    13
    13
    13
    12
    12
    12
    12
    12
    12
    12
    12
    12
    12
    12
    11
    11
    11
    11
    11
    11
    11
    11
    11
    11
    11
    11
    11
    11
    11
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    10
    9
    9
    9
    9
    9
    9
    9
    9
    9
    9
    9
    9
    9
    9
    9
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    8
    7
    7
    7
    7
    7
    7
    7
Source: Mather, R., ed. (1977): Workbook in applied Climatology. Elmer, N.J.: C.W. Thornthwaite Associates.
Example: Soil-water budget for Washington, D.C.
    
    J
    F
    M
    A
    M
    J
    J
    A
    S
    O
    N
    D
    T (ºC)
    3
    3
    7
    13
    19
    24
    26
    25
    21
    15
Answered 1 days After Mar 04, 2023

Solution

Dr Shweta answered on Mar 06 2023
53 Votes
Solutions:
Ans 1. Evaporation and transpiration are therefore the two processes that contribute to the loss of water and jointly known as evapotranspiration. Water turns from a liquid to a gas through a process called evaporation (water vapor). Evaporation transports water vapor from Earth's crust to the upper atmosphere. While the energy 
eaks the connections holding water molecules together, we observe evaporation. When plants lose water through their stomata in a process known as transpiration. When the temperature outside is extremely high, a plant's leaves and stems will 'draw' water from the ground, causing the plant to cool down through evaporation. If there is a reduction in the amount of precipitation, the water that is used for evapotranspiration will come from the ground, the plants, and the air. when the trend of decreasing annual precipitation and the trend of decreasing air humidity generated the trend of decreasing evapotranspiration.
Ans 2. The capacity of the soil to hold water is refe
ed to as its field capacity. When there is a significant amount of rainfall or when the ground is i
igated, some of the water runs off down the slopes, while the remaining water seeps down into the ground. When the capacity of the field is reached or exceeded when it is raining, water is permitted to freely drain using the power of gravity. The loss of free water that is stored between saturation and field capacity as a result of an excess of soil moisture is subject to gravitational flow and therefore occurs when there is a surplus of soil moisture.
Ans 3. Table 1. Water budget in Dallas, TX
    Water Balance for Dallas, TX
    
    J
    F
    M
    A
    M
    J
    J
    A
    S
    O
    N
    D
    T (°C)
    5
    7
    12
    16
    21
    26
    28
    28
    24
    21
    12
    4
    P (mm)
    64
    49
    76
    113
    149
    109
    77
    87
    91
    97
    66
    61
    PE (mm)
    5
    10
    31
    62
    105
    152
    177
    171
    117
    87
    26
    8
    P – PE
(mm)
    59
    39
    45
    51
    44
    -43
    -100
    -84
    -26
    10
    40
    53
    I. S.
(mm)
    150
    150
    150
    150
    150
    150
    150
    150
    150
    150
    150
    150
    E. S.
(mm)
    150
    150
    150
    150
    150
    150
    150
    150
    150
    150
    150
    150
    Δ ST
(mm)
    59
    39
    45
    51
    44
    43
    100
    84
    26
    10
    40
    53
    AE (mm)
    5
    10
    31
    62
    105
    104
    72
    81
    89
    87
    26
    8
    Surplus (mm)
    59
    39
    45
    51
    44
    0
    0
    0
    0
    10
    40
    53
    Deficit (mm)
    0
    0
    0
    0
    0
    43
    100
    84
    26
    0
    0
    0
Ans 4. Using the Water Balance for Dallas, TX we get,
Total AE (mm) = 698mm
Total Surplus (mm) =     341 mm
Total Deficit (mm) = 253 mm
Total P (mm) = Total AE + Total Surplus. It is the total of annual precipitation and the presumed water equivalent of snowfall and here, Total P = 698+341 = 1039 mm
Total PE (mm) = Total AE + Total Deficit. It is equivalent to the annual average of the potential evapotranspiration. Total PE = 698+253 = 951 mm
Ans 5. When the amount of precipitation received is higher than the amount of potential evapotranspiration and the soil has achieved its field capacity, this is the moisture surplus season. The equation...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here