Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

I have solved first two questions, I need solution to question 3 & 4 use solver for excel and give answers on word document. Use my excel provided in attachement. The important thing is you should...

1 answer below »
Lab Assessment 3 (15%) Location Decision model
Managing a Merger at Lightning Networks
After receiving regulatory approval from the European Union, Lightning Networks, a major
wireless ca
ier, and SatTV, the largest satellite TV provider in Europe, completed their 50
illion euro merger in 2016. After initial scepticism when the deal was first announced, analysts
had warmed to the idea of synergies in the merger. Lightning expected to benefit from the large
customer base of SatTV and the company announced that it expected significant annual cost
savings within three years of the merger. Simone Durand, senior VP of supply chain at Lightning,
was charged with identifying some cost reduction opportunities. She decided to focus her initial
attention on the distribution networks the two companies used to fulfill demand for installation
and repair products. The merger offered an opportunity to combine the two distribution
networks.
The Cu
ent Distribution Network
Any new installation or repair by Lightning or SatTV required a set of products for the technician
to complete the job. Rather than ca
ying these products with technicians, both companies had
decided to centralize product inventories in a few locations. Annual product demand for the
two companies across six regions in Europe was as shown in Table 5-16.
TABLE 5-16 Annual Demand in Europe for Lightning Networks (wireless) and SatTV (satellite)


Zone
Wireless
Demand
Satellite
Demand

Zone
Wireless
Demand
Satellite
Demand
Northwest 200,000 120,000 Middle South 120,000 120,000
Southwest 100,000 100,000 Northeast 150,000 110,000
Middle North 220,000 100,000 Southeast 90,000 100,000
Lightning had served its product needs from three warehouses located in Madrid, Spain;
Rotterdam, Nether­ lands; and Krakow, Poland. SatTV had served its product needs from three
warehouses located in Toulouse, France; Munich, Germany; and Budapest, Hungary. Each facility
was specialized to handle either wireless or satellite prod­ ucts because of the historical focus of
the company it belonged to. The specialization, capacity, and annual fixed cost for each facility
were as shown in Table 5-17. The capacity of each warehouse is given in terms of how much
annual demand it can handle. From Table 5-17, observe that the Madrid warehouse can serve
demand of up to 370,000 units.
TABLE 5-17 Warehouse Specialization, Capacities, and Fixed Costs

Location Specialization Capacity Fixed Cost (euro/year)
Madrid Wireless 370,000 600,000
Rotterdam Wireless 420,000 650,000
Krakow Wireless 310,000 520,000
Toulouse Satellite 280,000 475,000
Munich Satellite 290,000 488,000
Budapest Satellite 250,000 425,000
The variable cost of shipping one unit (either wireless or satellite) from each warehouse location to
each market is shown in Table 5-18.
TABLE 5-18 Variable Distribution Cost per Unit in Euro


Northwest

Southwest
Middle
North
Middle
South

Northeast

Southeast
Madrid XXXXXXXXXX XXXXXXXXXX
Rotterdam XXXXXXXXXX XXXXXXXXXX
Krakow XXXXXXXXXX XXXXXXXXXX
Toulouse XXXXXXXXXX XXXXXXXXXX
Munich XXXXXXXXXX XXXXXXXXXX
Budapest XXXXXXXXXX XXXXXXXXXX
The Network Options
Simone had a short term and a long­term decision to make. In the short term, she had to decide
whether to make all the warehouses flexible or not. Making all warehouses flexible required an
investment equivalent to an additional annual cost of 200,000 euro. Flexible warehouses, however, could
e used to serve demand for both wireless and satellite products.
In the longer term, Simone had to decide whether to restructure the distribution network. She could
choose to close some warehouses, leave others open as they were, or double the capacity of some
warehouses. Dou­ bling the capacity of a warehouse would increase its annual fixed cost by 80
percent. Thus, if the capacity of the Madrid warehouse was doubled, its annual fixed cost would be
900,000 euro.
Closing a warehouse would also incur some cost, thus reducing the annual fixed cost that could be
saved. Simone's team estimated that closing a warehouse would save 80 percent of the annual fixed
cost. Thus, closing the Madrid warehouse would still result in an annual cost of 100,000 euro
ecause only 80 percent of the fixed cost is saved.
Study Questions
1. What is the annual cost if Lightning uses the cu
ent network (with warehouses specialisations
as in Table 5­17) optimally to meet European demand?
2. Should Simone make all warehouses flexible given the additional cost of 200,000 euro per
year?
3. What supply chain network configuration do you recom­mend for the long term if demand is
as in Table 5­16? Should any warehouses be closed? Should any warehouses see their capacity
doubled?
4. What supply chain network configuration do you recommend for the long term if the
Northeast and Southeast demand is expected to increase by 30 percent while all other
demands remain as in Table 5­16? Should any warehouses be closed? Should any warehouses
see their capacity doubled?
    Managing a Merger at Lightning Networks
    The Cu
ent Distribution Network
    The Network Options

_EVSCRATCH
ev_HiddenInfo
    Optimize    ERROR:#REF!                MACROS            FORMAT    3        RISKOPT/obj
    FindThe    1    0            Start    FALSE        L.FORMULA            MaxIte
    Stop Trials    FALSE    1000            BeforeCalc    FALSE                    SmartStop
    Stop Minutes    FALSE    5            AfterCalc    FALSE                    SameSeed
    Stop Change    FALSE    100    1    TRUE    EndTrial    FALSE                    SampleType
    Stop Formula    FALSE                Finish    FALSE                    MacroBeforeSim
    Pop. Size    50                                        MacroAfterSim
    UNUSED    UNUSED                Seed    TRUE    1
    Up. Display    3
    PauseOnE
    FALSE
    Gen.Log    FALSE
    Graph    FALSE
    #Chrom.    2                                                                                                                                                                                                #Const.    2
    Meth+OtherOps    Mut.+Op    Cross+Op    Descr.    TimeBlocks    Const    #Ranges    Range    Min    Max    Flags                                                                                                                                            ROFUNCEVAL    RISKOPT    DEVEVAL    EVAL    Type    Entry M.    Form.    Description    LeftVal    LeftOp    Ref.    RightOp    RightVal    PenaltyFct    ROevaltime    ROfunc    ROparam
    RECIPE    0.1    0.5        0        1    ERROR:#REF!    0    100    False,False,False                                                                                                                                                            2    1            0    2    ERROR:#REF!    2    20
    RECIPE    0.1    0.5        0        1    ERROR:#REF!    0    1    True,False,False                                                                                                                                                            2    1            0    6    ERROR:#REF!    5    0
optimal cu
ent
    Warehouse Capacity & Fixed Cost
    Location    Capacity    Annual Fixed Cost
    Madrid    370000    600000
    Rotterdam    420000    650000
    Krakow    310000    520000
    Toulouse    280000    475000
    Munich    290000    488000
    Budapest    250000    425000
    Regional Demand By Product
        Northwest    Southwest    Middle North    Middle South    Northeast    Southeast
    Wireless    200000    100000    220000    120000    150000    90000
    Satellite    120000    100000    100000    120000    110000    100000
    Distribution Cost
        Northwest    Southwest    Middle North    Middle South    Northeast    Southeast
    Madrid    2.50    1.50    3.00    2.75    4.00    4.50
    Rotterdam    1.75    3.00    1.50    3.00    2.50    3.50
    Krakow    3.25    4.00    2.50    3.00    2.00    2.50
    Toulouse    2.00    2.00    2.75    2.50    3.75    4.00
    Munich    2.25    3.00    2.25    2.50    2.75    3.00
    Budapest    3.50    3.75    2.50    2.50    2.50    2.00
    Distribution Quantity Variables Wireless                                    Distribution Quantity Variables Satellite
        Northwest    Southwest    Middle North    Middle South    Northeast    Southeast    Capacity Constraint            Northwest    Southwest    Middle North    Middle South    Northeast    Southeast    Capacity Constraint
    Madrid    0    100000    0    120000    0    0    220000        Madrid
    Rotterdam    200000    0    220000    0    0    0    420000        Rotterdam
    Krakow    0    0    0    0    150000    90000    240000        Krakow
    Toulouse                                    Toulouse    120000    100000    0    60000    0    0    280000
    Munich                                    Munich    0    0    100000    60000    0    0    160000
    Budapest                                    Budapest    0    0    0    0    110000    100000    210000
    Demand Constraint    200000    100000    220000    120000    150000    90000            Demand Constraint    120000    100000    100000    120000    110000    100000
    Plant Fixed Cost (Wireless)    1770000
    Plant Fixed Cost (Satellite)    1388000
    Distribution Wireless    1685000
    Distribution Satellite    1440000
    Total Cost    6283000
optimal flexible
    Warehouse Capacity & Fixed Cost
    Location    Capacity    Annual Fixed Cost
    Madrid    370000    600000
    Rotterdam    420000    650000
    Krakow    310000    520000
    Toulouse    280000    475000
    Munich    290000    488000
    Budapest    250000    425000
    Regional Demand By Product
        Northwest    Southwest    Middle North    Middle South    Northeast    Southeast
    DemandWireless    200000    100000    220000    120000    150000    90000
    DemandSatellite    120000    100000    100000    120000    110000    100000
    Distribution Cost
        Northwest    Southwest    Middle North    Middle South    Northeast    Southeast
    Madrid    2.50    1.50    3.00    2.75    4.00    4.50
    Rotterdam    1.75    3.00    1.50    3.00    2.50    3.50
    Krakow    3.25    4.00    2.50    3.00    2.00    2.50
    Toulouse    2.00    2.00    2.75    2.50    3.75    4.00
    Munich    2.25    3.00    2.25    2.50    2.75    3.00
    Budapest    3.50    3.75    2.50    2.50    2.50    2.00
    Distribution Quantity Variables Wireless                                    Distribution Quantity Variables Satellite
        Northwest    Southwest    Middle North    Middle South    Northeast    Southeast                Northwest    Southwest    Middle North    Middle South    Northeast    Southeast        Capacity Constraint
    Madrid    0    100000    0    0    0    0            Madrid    0    100000    0    0    0    0        200000
    Rotterdam    0    0    220000    0    0    0            Rotterdam    100000    0    100000    0    0    0        420000
    Krakow    0    0    0    0    150000    0            Krakow    0    0    0    0    110000    0        260000
    Toulouse    200000    0    0    60000    0    0            Toulouse    20000    0    0    0    0    0        280000
    Munich    0    0    0    60000    0    0            Munich    0    0    0    60000    0    0        120000
    Budapest    0    0    0    0    0    90000            Budapest    0    0    0    60000    0    100000        250000
    Wireless Demand Constraint    200000    100000    220000    120000    150000    90000            Sat Demand Constraint    120000    100000    100000    120000    110000    100000
    Plant Fixed Cost    3158000
    Distribution Wireless    1660000
    Distribution Satellite    1235000
    Total Cost    6053000
    Cost Savings    230000
    Annual Fixed Cost    200000
    Annual Savings    30000
    Total Savings    90000
Sensitivity Report 1
    Microsoft Excel 16.0 Sensitivity Report
    Worksheet: Lab Case 3
    Report Created: 23/05/2022 3:46:17 PM
    Variable Cells
                Final    Reduced    Objective    Allowable    Allowable
        Cell    Name    Value    Cost    Coefficient    Increase    Decrease
        $B$26    Madrid Northwest    0    0.5    2.5    1E+30    0.5
        $C$26    Madrid Southwest    100000    0    1.5    0.5    1.5
        $D$26    Madrid Middle North    0    1.25    3    1E+30    1.25
        $E$26    Madrid Middle South    0    0.25    2.75    1E+30    0.25
        $F$26    Madrid Northeast    0    2    4    1E+30    2
        $G$26    Madrid Southeast    0    2.5    4.5    1E+30    2.5
        $B$27    Rotterdam Northwest    0    0    1.75    1E+30    0
        $C$27    Rotterdam Southwest    0    1.75    3    1E+30    1.75
        $D$27    Rotterdam Middle North    220000    0    1.5    0.5    1.75
        $E$27    Rotterdam Middle South    0    0.75    3    1E+30    0.75
        $F$27    Rotterdam Northeast    0    0.75    2.5    1E+30    0.75
        $G$27    Rotterdam Southeast    0    1.75    3.5    1E+30    1.75
        $B$28    Krakow Northwest    0    1.25    3.25    1E+30    1.25
        $C$28    Krakow Southwest    0    2.5    4    1E+30    2.5
        $D$28    Krakow Middle North    0    0.75    2.5    1E+30    0.75
        $E$28    Krakow Middle South    0    0.5    3    1E+30    0.5
        $F$28    Krakow Northeast    150000    0    2    0.5    2
        $G$28    Krakow Southeast    0    0.5    2.5    1E+30    0.5
        $B$29    Toulouse Northwest    200000    0    2    0    2
        $C$29    Toulouse Southwest    0    0.5    2    1E+30    0.5
        $D$29    Toulouse Middle North    0    1    2.75    1E+30    1
        $E$29    Toulouse Middle South    60000    0    2.5    0    0.25
        $F$29    Toulouse Northeast    0    1.75    3.75    1E+30    1.75
        $G$29    Toulouse Southeast    0    2    4    1E+30    2
        $B$30    Munich Northwest    0    0.25    2.25    1E+30    0.25
        $C$30    Munich Southwest    0    1.5    3    1E+30    1.5
        $D$30    Munich Middle North    0    0.5    2.25    1E+30    0.5
        $E$30    Munich Middle South    60000    0    2.5    0    0
        $F$30    Munich Northeast    0    0.75    2.75    1E+30    0.75
        $G$30    Munich Southeast    0    1    3    1E+30    1
        $B$31    Budapest Northwest    0    1.5    3.5    1E+30    1.5
        $C$31    Budapest Southwest    0    2.25    3.75    1E+30    2.25
        $D$31    Budapest Middle North    0    0.75    2.5    1E+30    0.75
        $E$31    Budapest Middle South    0    0    2.5    1E+30    0
        $F$31    Budapest Northeast    0    0.5    2.5    1E+30    0.5
        $G$31    Budapest Southeast    90000    0    2    0.5    2
        $K$26    Madrid Northwest    0    0.5    2.5    1E+30    0.5
        $L$26    Madrid Southwest    100000    0    1.5    0.5    1.5
        $M$26    Madrid Middle North    0    1.25    3    1E+30    1.25
        $N$26    Madrid Middle South    0    0.25    2.75    1E+30    0.25
        $O$26    Madrid Northeast    0    2    4    1E+30    2
        $P$26    Madrid Southeast    0    2.5    4.5    1E+30    2.5
        $K$27    Rotterdam Northwest    100000    0    1.75    0    0.5
        $L$27    Rotterdam Southwest    0    1.75    3    1E+30    1.75
        $M$27    Rotterdam Middle North    100000    0    1.5    0.5    1.75
        $N$27    Rotterdam Middle South    0    0.75    3    1E+30    0.75
        $O$27    Rotterdam Northeast    0    0.75    2.5    1E+30    0.75
        $P$27    Rotterdam Southeast    0    1.75    3.5    1E+30    1.75
        $K$28    Krakow Northwest    0    1.25    3.25    1E+30    1.25
        $L$28    Krakow Southwest    0    2.5    4    1E+30    2.5
        $M$28    Krakow Middle North    0    0.75    2.5    1E+30    0.75
        $N$28    Krakow Middle South    0    0.5    3    1E+30    0.5
        $O$28    Krakow Northeast    110000    0    2    0.5    2
        $P$28    Krakow Southeast    0    0.5    2.5    1E+30    0.5
        $K$29    Toulouse Northwest    20000    0    2    0.25    0
        $L$29    Toulouse Southwest    0    0.5    2    1E+30    0.5
        $M$29    Toulouse Middle North    0    1    2.75    1E+30    1
        $N$29    Toulouse Middle South    0    0    2.5    1E+30    0
        $O$29    Toulouse Northeast    0    1.75    3.75    1E+30    1.75
        $P$29    Toulouse Southeast    0    2    4    1E+30    2
        $K$30    Munich Northwest    0    0.25    2.25    1E+30    0.25
        $L$30    Munich Southwest    0    1.5    3    1E+30    1.5
        $M$30    Munich Middle North    0    0.5    2.25    1E+30    0.5
        $N$30    Munich Middle South    60000    0    2.5    0    0
        $O$30    Munich Northeast    0    0.75    2.75    1E+30    0.75
        $P$30    Munich Southeast    0    1    3    1E+30    1
        $K$31    Budapest Northwest    0    1.5    3.5    1E+30    1.5
        $L$31    Budapest Southwest    0    2.25    3.75    1E+30    2.25
        $M$31    Budapest Middle North    0    0.75    2.5    1E+30    0.75
        $N$31    Budapest Middle South    60000    0    2.5    0    0.5
        $O$31    Budapest Northeast    0    0.5    2.5    1E+30    0.5
        $P$31    Budapest Southeast    100000    0    2    0.5    2
    Constraints
                Final    Shadow    Constraint    Allowable    Allowable
        Cell    Name    Value    Price    R.H. Side    Increase    Decrease
        $B$32    Wireless Demand Constraint Northwest    200000    2    200000    60000    60000
        $C$32    Wireless Demand Constraint Southwest    100000    1.5    100000    170000    100000
        $D$32    Wireless Demand Constraint Middle North    220000    1.75    220000    60000    20000
        $E$32    Wireless Demand Constraint Middle South    120000    2.5    120000    170000    60000
        $F$32    Wireless Demand Constraint Northeast    150000    2    150000    50000    150000
        $G$32    Wireless Demand Constraint Southeast    90000    2    90000    60000    60000
        $K$32    Sat Demand Constraint Northwest    120000    2    120000    60000    20000
        $L$32    Sat Demand Constraint Southwest    100000    1.5    100000    170000    100000
        $M$32    Sat Demand Constraint Middle North    100000    1.75    100000    60000    20000
        $N$32    Sat Demand Constraint Middle South    120000    2.5    120000    170000    60000
        $O$32    Sat Demand Constraint Northeast    110000    2    110000    50000    110000
        $P$32    Sat Demand Constraint Southeast    100000    2    100000    60000    60000
        $R$26    Madrid Capacity Constraint    200000    0    370000    1E+30    170000
        $R$27    Rotterdam Capacity Constraint    420000    -0.25    420000    20000    60000
        $R$28    Krakow Capacity Constraint    260000    0    310000    1E+30    50000
        $R$29    Toulouse Capacity Constraint    280000    0    280000    60000    60000
        $R$30    Munich Capacity Constraint    120000    0    290000    1E+30    170000
        $R$31    Budapest Capacity Constraint    250000    0    250000    60000    60000
1
2
3
4
5
6
7
8
9
10
A
Warehouse Capacity & Fixed Cost
Location
Madrid
Rotterdam
Krakow
Toulouse
Munich
Budapest
Regional Demand By Product
Answered Same Day May 23, 2022

Solution

Dr Shweta answered on May 23 2022
95 Votes
Screenshot of Solve
Ans 3. Here we believed that the warehouses are not flexible as it’s the case of long-term demand and flexibility option is only mentioned in case of short-term demand. From the results we concluded that none of the warehouses should be closed and the capacity of none of the...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here