Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Principles Of Mass Transfer And Separation Process COVER Table of Contents Preface 1 - Introduction 2 - Molecular Diffusion 2.1 Concentration, Velocity and Flux 2.2 Fick's Law 2.3 Steady State...

1 answer below »
Principles Of Mass Transfer And Separation Process
    COVER
    Table of Contents
    Preface
    1 - Introduction
    2 - Molecular Diffusion
    2.1 Concentration, Velocity and Flux
    2.2 Fick's Law
    2.3 Steady State Molecular Diffusion Through a Constant Area in a Binary Gas Mixture
    2.4 Multicomponent Diffusion
    2.5 Gas-Phase Diffusion Coefficient: Measurement and Prediction
    2.6 Molecular Diffusion in Liquids
    2.7 Diffusion through a Variable Area
    2.8 Knudsen Diffusion, Surface Diffusion and Self-Diffusion
    2.9 Applications of the Principles of Molecular Diffusion
    Short Questions
    Problems
    References
    3 - Convective Mass Transfer and Mass Transfer Coefficient
    3.1 The Mass Transfer Coefficient
    3.2 Types of Mass Transfer Coefficients
    3.3 Dimensionless Groups in Mass Transfe
    3.4 Co
elations for the Convective Mass Transfer Coefficient
    3.5 Tu
ulent or Eddy Diffusion
    3.6 The Wetted Wall Column
    3.7 Theories of Mass Transfe
    3.8 Momentum, Heat and Mass Transfer Analogies
    Short Questions
    Problems
    References
    4 - Interphase Mass Transfe
    4.1 Equili
ium Between Phases
    4.2 The Raoult's and the Henry's Law
    4.3 Mass Transfer Between Two Phases
    4.4 The Overall Mass Transfer Coefficient
    4.5 Material Balance in a Contacting Equipment - The Operating Line
    4.6 Mass Transfer in Stage-Wise Contact of Two Phases
    4.7 Interphase Mass Transfer in Drug Delivery Systems
    4.8 Applications
    Short Questions
    Problems
    References
    5 - Gas-Liquid Contacting Equipment
    5.1 Introduction to Gas-Liquid Contacting
    5.2 Tray or Plate Column
    5.3 Operational Features of a Tray column
    5.4 A Few Mechanical Details
    5.5 Tray Design
    5.6 High Capacity Trays
    5.7 Agitated Vessels
    5.8 The Bu
le Column
    5.9 The Spray Towe
    5.10 The Venturi Scru
e
    5.11 The Packed Towe
    5.12 Flooding in a Packed Towe
    5.13 Theoretical Models of Flow through a Packed Towe
    5.14 Comparison between Packed and Plate Towers
    Short Questions
    Problems
    References
    6 - Gas Absorption and Stripping
    6.1 Equili
ium in a Gas-Liquid System
    6.2 Selection of Solvent and Stripping Medium
    6.3 Minimum Liquid Rate for Absorption
    6.4 Design of a Packed Towe
    6.5 Co
elations for Mass Transfer Coefficients in Packed Towers
    6.6 Determination of the Number of Stages in a Tray Towe
    6.7 Height Equivalent to a Theoretical Plate (HETP)
    6.8 Tray Efficiency
    6.9 Other Applications of Gas Absorption and Stripping
    Short Questions
    Problems
    References
    7 - Distillation
    7.1 Vapour-Liquid Equili
ium
    7.2 Enthalpy-Cpncentration Diagram
    7.3 Flash Vaporization (Also Called Flash Distillation)
    7.4 Steam Distillation
    7.5 Batch Distillation (Also Called Differential Distillation or Rayleigh Distillation)
    7.6 Continuous Multistage Fractionation of Binary Mixtures
    7.7 Multistage Batch Distillation with Reflux
    7.8 The Ponchon-Savarit Method
    7.9 Distillation in a Packed Towe
    Short Questions
    Problems
    References
    8 - Liquid-Liquid Extraction
    8.1 A Few Examples of Solvent Extraction
    8.2 Liquid-Liquid Equili
ia (LLE)
    8.3 Solvent Selection
    8.4 Design Calculations for Stage-Wise Extraction
    8.5 Liquid-Liquid Extraction Equipment
    8.6 Selection of Extractors
    8.7 Hydrodynamics and Mass Transfer in a Sti
ed Liquid-Liquid Dispersion
    8.8 Extraction Equipment Design
    Short Questions
    Problems
    References
    9 - Solid-Liquid Extraction
    9.1 Classification of Solid-Liquid Extraction Systems
    9.2 The Rate of Solid-Liquid Extraction
    9.3 Solid-Liquid Contacting Strategy
    9.4 Solid-Liquid Contacting Equipment
    9.5 Solid-Liquid Extraction Equili
ium
    9.6 Solid-Liquid Extraction Calculations
    9.7 Supercritical Fluid Extraction
    Short Questions
    Problems
    References
    10 - Humidification and Water Cooling
    10.1 Terminology and Definitions
    10.2 Adiabatic Saturation Temperature
    10.3 Wet-Bulb Temperature
    10.4 The Psychometric Chart and its Use
    10.5 Description of Cooling Towers - Construction and Operation
    10.6 Cooling Tower Calculations
    10.7 Some Additional Information on Cooling Towers
    Short Questions
    Problems
    References
    11 - Drying of Wet Solids
    11.1 Physical Mechanism of Drying
    11.2 Drying Equili
ia
    11.3 Important Definitions and Terms
    11.4 The Drying Rate Curve
    11.5 Calculations of the Drying Time from the Drying Rate Data
    11.6 Classification of Drying Equipment
    11.7 Direct-Heat Batch Dryers: Tray and Truck Dryers
    11.8 Direct-Heat Continuous Dryers
    11.9 Indirect-Heat Batch Systems
    11.10 Indirect-Heat Continuous Dryers
    11.11 Air-Suspended Drying Systems
    11.12 Drying Calculations
    11.13 Preliminary Design of a Rotary Drye
    11.14 Freeze Drying Calculations
    11.15 Dryer Selection
    Short Questions
    Problems
    References
    12 - Adsorption
    12.1 Commercial Adso
ents and their Applications
    12.2 Characteristics and Properties of Adso
ents
    12.3 Adsorption Equili
ia
    12.4 Heat of Adsorption
    12.5 Specific Surface Area of an Adso
ent
    12.6 Selection of Adso
ents
    12.7 Batch Adsorption in a Sti
ed Vessel
    12.8 Adsorption in a Fixed Bed
    12.9 Adsorption Equipment
    12.10 Adsorption Dynamics
    12.11 Thermal Regeneration of Adso
ents
    12.12 Pressure Swing Adsorption
    12.13 Ion-Exchange
    12.14 Chromatography
    Short Questions
    Problems
    References
    13 - Crystallisation
    13.1 Solid-Liquid Phase Equili
ium
    13.2 Nucleation and Crystal Growth
    13.3 Crystal Growth
    13.4 Crystal Size Distribution
    13.5 Characteristics of Crystal Size Distribution
    13.6 Batch Crystallization
    13.7 Crystallization Equipment
    13.8 Design Considerations
    13.9 Melt Crystallization
    Short Questions
    Problems
    References
    14 - Mem
ane Separation
    14.1 Materials, Types and Preparation of Mem
anes
    14.2 Mem
ane Characterization
    14.3 Mem
ane Modules
    14.4 Pressure Driven Mem
ane Processes for Liquid Separation
    14.5 Concentration-Driven Processes
    14.6 Mem
ane Gas Separation
    Short Questions
    Problems
    References
    15 - Multicomponent Distillation
    15.1 Degrees of Freedom in Multicomponent Distillation
    15.2 Key Components
    15.3 Column Operating Conditions
    15.4 Approximate Methods of Distillation Calculation - The FUG Technique
    15.5 Rigorous Methods of Distillation Calculation
    15.6 The Rate-Based Method
    15.7 Separation of Close-Boiling and Azeotropic Mixtures
    15.8 Divided-Wall Columns
    Short Questions
    Problems
    References
    16 - Transient Diffusion and Mass Transfer with Chemical Reaction
    16.1 Transient Diffusion in Three Dimensions
    16.2 Diffusion Accompanied by a Chemical Reaction in a Liquid
    16.3 I
eversible Second-Order Reaction
    16.4 Instantaneous Reaction
    16.5 Reaction Regimes of a Second-Order Reaction
    Short Questions
    Problems
    References
    Appendix A
    A.1 Vapour-Liquid Equili
ia
    A.2 K-Values of Hydroca
ons
    Dispersion in a Flow Field
    References
    Answers/Hints to Selected Questions and Problems
    Index
Answered Same Day May 30, 2021 Edith Cowan University

Solution

Rahul answered on Jun 01 2021
144 Votes
Chapter ii3
Design iithe iiMem
ane iiUsing iiReverse iiOsmosis iito iiFilter iiSea iiWater iiand iiBrackish
3.1 iMem
ane iType
A imem
ane ishould ibe ias ithin ias ipossible iif ia ihigh ipermeation iis ito ibe iachieved. iMem
ane iseparation imay inot ibe ieconomical iif ithe iflux iis ilow. iBut ifor iall ipractical ipurposes, ia imem
ane imust ihave ireasonable imechanical istrength iand ishould ibe i‘defect- ifree’ i(large i– isize ipores iand ifissures iin ia imem
ane iare icalled imem
ane idefects; idefects imay iappear iduring ifa
ication iof ia imem
ane). iIf ithe imem
ane iis itoo ithin iand imechanically iweak, iit idifficult ito ihandle iit iand ito ifa
icate ia imem
ane iseparation imodule. iIt iis ipractically iimpossible ito icast ia imem
ane iless ithan iabout i20 iµ im iin ithickness. iBut ian iisotropic iporous imem
ane iof ithis ithickness i( ifor iultrafiltration i, ifor iexample i) ioffers itoo imuch iresistance ito isolvent iflow i, iand ithe iflux idoes inot ibecome iacceptable i.
This iseeming iformidable iproblem iwas isolved iby ifa
ication iof ithe i‘asymmetric imem
ane’ i, iwhich iis iprobably ithe igreatest i
eakthrough iin imem
ane iwhich iis iprobably ithe igreatest i
eakthrough iin imem
ane iresearch iand idevelopment. iAn iasymmetric imem
ane ihas ia ithin i(0.1 ito i1 iµm) ipermselective ilayer isupported ion ia ihighly iporous isubstructure i. iThe ithin ilayer imay ibe inon iporous i(for iuse ias ian iRO imem
ane i). iBut ithe ientire imem
ane iis ian iintegral ipiece iof ithe isame imaterial i. iThe ithick i, ihighly iporous isubstructure ioffers inecessary imechanical istrength ibut idoes inot ioffer iany iappreciable iresistance ito ipermeation isince iit ihas imuch ilarger ipores iand ia ihigh iporosity.
3.1.1 iPreparation iof ian iasymmetric imem
ane i
The iprinciple iof ipreparation iof ian iasymmetric ipolymeric imem
ane iis iapparently isimple. iIt iis ibased ion ithe iphenomenon iof iphase iinversion—i.e. iprecipitation iof ithe ipolymer ifrom ia ilayer iof ithe icasting isolution iby isuitably imanipulating ithe ienvironment. iPrecipitation iinvolves ia ichange iof ithe i'solution iphase' iof ithe ipolymer ito ithe i'solid iphase'. iHence ithe iname. iPhase iinversion ican ibe idone iby ia inumber iof itechniques ibased ion ipartial iremoval iof ithe isolvent ior ireduction iof ithe isolubility iof ithe ipolymer iin ithe isolvent ithus iseparating iout ithe ipolymer ias ia isolid i'polymer-rich iphase' ifrom ithe isolution. iThe iother iphase iis ia ipolymer-lean ior isolvent-rich iliquid iphase. iThe icommon
itechniques iof iprecipitation iof ia ipolymer iare: i(i) icooling iof ithe icasting isolution, i(ii) ievaporation iof ithe isolvent, iand i(iii) iimmersion iin ia inon-solvent ilike iwater. iThe imost iimportant ifactor ithat icontrols ithe imem
ane i'morphology' iis ithe ikinetics ior irate iof iphase iinversion. iIf ithe iphase iinversion iprocess iis ifast, iboth ithe iprecipitated isolid iphase iand ithe isolvent iform ivery ismall iparticles ior idroplets iso ithat iafter iremoval iof ithe isolvent, ia ifilm iwith ivery ismall ipores iis iobtained. iOn ithe iother ihand, iif iprecipitation ioccurs islowly, ithe iliquid idroplets ibecome ilarge iby iagglomeration iand ithe iresulting imem
ane icontains ilarger ipores i(Ruthven, i1997) isuitable ifor imicrofiltration iapplications. i
3.1.2 iPrecipitation iby icooling i
In ithis itechnique ithe ipolymer iis idissolved iin ia isolvent iat ian ielevated itemperature iand ithen ispread iin ia ilayer ion ithe icasting iplate ior isurface. iAs ithe ilayer icools, ithe isolubility iOf ithe ipolymer idecreases iand iphase iinversion ioccurs. iforming ia ipolymer imatrix iwith iinterspersed iregions iof ithe isolvent ihaving ia ilow iconcentration iof ithe ipolymer. iIf ithe isolvent iis iwashed iout, ia iporous imem
ane iis ileft ibehind. iThis itechnique iis iuseful ito iproduce imicrofiltration imem
anes ihaving irather ilarge ipores. iSmall ipore imem
anes imay, ihowever, ibe imade iby irapid icooling iof ithe ilayer iand iprecipitation ior ithe ipolymer. i
3.1.3 iPrecipitation iby ievaporation i
In ithis itechnique ithe ipolymer iis idissolved iin ia imixed isolvent—one isolvent imore ivolatile i(e.g. iacetone) iand ithe iother iless ivolatile i(e.g. iwater ior ialcohol). iAfter icasting ion ia iplate, imuch iof ithe imore ivolatile isolvent iis iallowed ito ievaporate. ithereby iprecipitating ithe ipolymer. iThe iremaining idispersed isolvent iphase iis iremoved iby iwashing ias iusual. iThis itechnique ialso iproduces imicroporous imem
anes. i
3.1.4 iPrecipitation iby iimmersion iin ia inon-solvent i
This itechnique iwas ideveloped iby iLoeb iand iSourirajan i(1963) ito iprepare iasymmetric icellulose iacetate iRO imem
anes. iThis iextremely iimportant iand iuseful itechnique iis inow iused ifor imaking iasymmetric iUF iand igas iseparation imem
anes ias iwell. iFor ilaboratory ipreparation, ia isolution iOf ithe ipolymer i(CA iin iacetone, ifor iexample) iis icast ion ia iglass iplate iand ithen iimmersed iin icold iwater. iThe ipolymer iis inot isoluble iin iwater—i.e. iwater iis ia i‘non-solvent'. iSome iof ithe isolvent i(acetone) igets iextracted iin ithe iwater iand ithe ipolymer iprecipitates iat ithe iexposed itop isurface iof ithe ifilm iforming ia idense iultrathin i‘skin'. iThis iskin islows idown ithe irate iof iloss iof isolvent ifrom iinside ithe ifilm. iAs ia iresult, iprecipitation iin ithe ibulk iof ithe ifilm ibecomes islow iand ithe ipores itherein ibecome ilarge, iand ian iasymmetric imem
ane iconsisting iof ian iultrathin ipermselective ilayer ion ia ihighly iporous isubstructure iis iformed. i
For icommercial imem
ane iproduction, ithe ifilm iis...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here