Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

GR5215 Ron Miller Fall 2021 Assignment 2; due Thursday October 7 in class 1) Assume that the rate of exogenous technological progress is constant in the Solow model, but assume that the production...

1 answer below »
GR5215    
Ron    Miller    
Fall    2021    
    
Assignment    2;    due    Thursday    October    7    in    class    

1) Assume that the rate of exogenous technological progress is constant in the Solow
model, but assume that the production function is Y = F [B(t)K ,A(t)L], where
B(t)=ezt and A(T)=ext , with z ≥ 0 and x ≥ 0. Show that if z > 0 and a steady state exists,
the production function must take the Co
–Douglas form.

2) Transitional dynamics in the Solow model.
Simulate a discrete time version of the Solow model, where the unit of time is one year.
Assume a Co
-Douglas production function:
Population grows at 2% per year, annual depreciation is 3%, and the savings rate is 25%.
There is no technological change.
To start with assume α = 0.33.
a) Solve for the steady-state capital-labor ratio. (You can do this from the continuous
time equations we examined in class.)
) Simulate the model starting from L0=1 (that’s just a normalization) and K0 = 0.05
of the steady state K/L ratio. (You can use any software you want to do the simulation.
Excel will do.) Include the simulation results in your answer. About how many years
does it take to reach steady-state? (It won’t get there exactly – state how you have defined
convergence.)
c) Repeat the simulation with α = 0.7. Now how long does convergence take?
    
3)    Consider    the    two-period    consumption    problem    with    exogenous    income    and    given    
interest    rate    r.        Suppose    that    the    government    taxes    interest    income    at    the    rate    Ï„.    The    
government’s    revenue    will    be    zero    in    period    1    and    Ï„r(Y1    â€“C1)    in    period    2.    
    
a)    Write    out    the    individual’s    budget    constraint.    
    
Now    suppose    the    government    eliminates    the    taxation    of    interest    income    
and    instead    institutes    lump-sum    taxes    of    amounts    T1    and    T2    in    the    two    periods.        
    
)    Write    out    the    individual’s    budget    constraint    under    this    alternate    tax    regime.    
c)    What    condition    must    the    new    taxes    satisfy    so    that    the    change    does    not    affect    the    
present    value    of    government    revenue?    
d)    If    the    new    taxes    satisfy    the    condition    in    part    (c)    is    the    old    consumption    
undle,    not    affordable,    just    affordable,    or    affordable    with    room    to    
spare?    
e)    If    the    new    taxes    satisfy    the    condition    in    part    (c)    does    first-period    consumption    
ise,    fall,    or    stay    the    same?    
    
4)    a)    Write    down    a    version    of    the    Solow    growth    model    in    which    the    labor    force    is    a    
fraction    !    of    the    population.    For    simplicity,    assume    no    population    growth.    Write    
down    the    equation    for    steady    state    under    the    assumption    that        !=    !#,    a    constant.    
Does    this    change    have    any    substantive    effect    on    the    Solow    model?    
        Y = AK αL1−α

GR5215    
Ron    Miller    
Fall    2021    
    
)    Suppose    !    grows    at    a    constant    rate,    !$.        How    does    this    steady    increase    affect    the    
growth    rate    of    per    capita    income?    Solve    for    the    steady    state    in    this    model.    
    
c)    Briefly    explain    how    your    answer    to    part    (b)    may    help    explain    high    growth    rates    in    
some    developing    countries.    Why    is    this    source    of    growth    necessarily    temporary?    
Graphically    depict    the    transition    from    a    positive    !$    to    zero    labor    force    participation    
growth.
Answered 86 days After Oct 06, 2021

Solution

Komalavalli answered on Jan 01 2022
134 Votes
Q1
2
a)
)
    Â 
    L
    K
    k
    0
    1
    0.05
    0.3721
    1
    0.95
    0.1
    0.484089
    2
    0.8
    0.15
    0.620926
    3
    0.75
    0.2
    0.712933
    4
    0.7
    0.25
    0.80372
    5
    0.65
    0.3
    0.897012
    6
    0.6
    0.35
    0.995821
    7
    0.55
    0.4
    1.103156
When α = 0.33 the convergence took in 6...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here