Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

1 Structures Q1. Determine the magnitudes of the forces in members a, b, c in the simplest possible way. Q2. A concrete road bridge is proposed to have the profile shown below. Indicate with diagrams...

1 answer below »

1 Structures Q1. Determine the magnitudes of the forces in members a, b, c in the simplest possible way. Q2. A concrete road bridge is proposed to have the profile shown below. Indicate with diagrams how you might prestress this. Provide in your answer a list of the factors influencing your decisions 1 TURN OVER 2 Fluid Mechanics Q3. (a) A wide rectangular channel has a slope S = 0.02. The bed and walls of the channel are paved with concrete. The value of Mannings roughness coefficient is n = 0.014 and the discharge per unit width of the channel is q = 3m2/s. Specify if the flow in the channel is sub- or supercritical and find the depth and velocity of the flow. (b) The flow from the channel enters a natural channel of a similar cross-section. A downstream control is used to maintain the depth H = 1.2m just upstream of the entry point (see figure). To prevent the erosion of the natural bed a horizontal apron is used. Estimate the minimal required length of the apron L to ensure that the hydraulic jump occurs over the paved surface.               S H L Q4. A mooring tower used for loading oil onto tankers at an offshore oil field comprises a vertical circular sectioned steel tower 7m in diameter. The water depth is 100m and the tower is kept vertical by means of 4 guy cables attached to the tower at a height of 70m above t base of the tower. Estimate the maximum tension the guy cables have to withstand due to this tidal current. Also calculate the horizontal reaction force at the tower base to satisfy overall equilibrium conditions. The following data should be used in your calculation: for seawater µ = 1.5 × 10-3 kg m-1 s -1 and ? = 1025 kg/m3 ; for a circular cylinder, CD = 1.2 for Reynolds number Red < 3 × 105 and CD = 0.6 for Re > 3 × 105 .

Answered Same Day Dec 20, 2021

Solution

David answered on Dec 20 2021
122 Votes
Problem‐1 
From, the given structural figure it is a symmetrical truss with symmetrical loadings. Also see the 
following figure. From the symmetry the member forces are as below. 
 
 
 
 
 
 
 
 
 
 
 
Now, from the problem figure, 6m=5l .  
Also, tanθ = 2/5. so cosθ=5/√29 
Now, taking moments about joint A equal to 0 gives the force in member c to be  √  which is 
compressive. For this the section considered is X‐X. 
Now, taking moments about joint B equal to 0 gives the force in member CE to be  √  which is 
also compressive. For this the section is Y‐Y. 
Now, consider the joint equili
ium of Joint C as shown below:‐ 
The angles are worked out based on trigonometry and considering the above fact of 6m=5l. 
 
Also, cosP =  √  
 
 
 
 
 
FCE 
45° 
FCA 
90°‐θ 





R1  θ 





  Y 

2.5  2.5 




Joint Equli
ium of joint C in x direction gives the following equation:‐ 
√5 √2
5

Joint Equli
ium of C in y direction gives the following equation:‐ 
4
√5 √2
13
3  
Solving the above 2 eq. gives that FA is 2.68 (Tensile) and FCA is 0.66 (Compressive). 
Now, taking moments about joint C gives the following equation. 
20 
Also, considering the moments about joint D to be 0 gives the following eq.:‐ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem‐2 
Here, assuming the deck depth to be a parabolic function of distance from the nearest end of the 
idge gives that depth d = x2 + A. 
i.e. if x is taken as the distance from the central pier, then d = (35000‐x)2 + A. 
Now, Assuming the 
ick deck to be of uniform width b throught we have Deal Load due to deck 
equal to 25*b*d kN/m where the unit weight of the prestressed concrete has been assumed to be 
25 kN/m3. 
So Initially when the 
idge is prestressed there is no vehicular traffic on the 
idge. 
So the only load is Dad Load and is the significant one initially. 
Now, Shear Force V =   
Hence, V = Ax3 + Bx2 + Cx + D where A,B,C,D are constants. 
Now, again integrating the above shear force gives the moment. 
Hence, moment M = C1x
4 + c2x
3 + c3x
2 + c4x + c5. 
Now,  if  the  eccentricity  of  the  prestressing  cables  is  assumed  to  be  positive when  below  the 
neutral  axis  then  it  produces  a moment which  acts  opposite  to  the  loading moment  provided 
eccentricity  is positive. Also at the supports there are negative moments which require negative 
eccentricity. 
Thus, Opposing momemt = F*e <= Loading moment M. 
where F is the prestressing force. 
Thus, eccentricity e <= (M/F) 
Hence, emax is Mmax/F. 
Now, initially the 
idge deck is not loaded so the loading moment is about half the value of M and 
since  the prestressing  force  is compressive  the eccentricity  should be sufficiently higher  so  that 
the concrete doesn’t crush due  to the prestressing  force and so  the anchoring blocks should be 
designed. 
Also the eccentricity must not be so higher that ...
SOLUTION.PDF

Answer To This Question Is Available To Download