Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

ANALYTICS, DATA SCIENCE, & ARTIFICIAL INTELLIGENCE SYSTEMS FOR DECISION SUPPORT E L E V E N T H E D I T I O N Ramesh Sharda Oklahoma State University Dursun Delen Oklahoma State...

1 answer below »
ANALYTICS, DATA SCIENCE, &
ARTIFICIAL INTELLIGENCE
SYSTEMS FOR DECISION SUPPORT
E L E V E N T H E D I T I O N
Ramesh Sharda
Oklahoma State University
Dursun Delen
Oklahoma State University
Efraim Tu
an
University of Hawaii
Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided “as is” without wa
anty of any kind. Microsoft and/or its respective
suppliers hereby disclaim all wa
anties and conditions with regard to this information, including all wa
anties
and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect
or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an
action of contract, negligence or other tortious action, arising out of or in connection with the use or performance
of information available from the services. The documents and related graphics contained herein could include
technical inaccuracies or typographical e
ors. Changes are periodically added to the information herein. Microsoft
and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s)
described herein at any time. Partial screen shots may be viewed in full within the software version specified.
Microsoft® Windows® and Microsoft Office® are registered trademarks of Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.
Vice President of Courseware Portfolio
Management: Andrew Gilfillan
Executive Portfolio Manager: Samantha Lewis
Team Lead, Content Production: Laura Burgess
Content Producer: Faraz Sharique Ali
Portfolio Management Assistant: Bridget Daly
Director of Product Marketing: Brad Parkins
Director of Field Marketing: Jonathan Cottrell
Product Marketing Manager: Heather Taylo
Field Marketing Manager: Bob Nisbet
Product Marketing Assistant: Liz Bennett
Field Marketing Assistant: De
ica Mose
Senior Operations Specialist: Diane Peirano
Senior Art Director: Mary Seine
Interior and Cover Design: Pearson CSC
Cover Photo: Phonlamai Photo/Shutterstock
Senior Product Model Manager: Eric Hakanson
Manager, Digital Studio: Heather Da
y
Course Producer, MyLab MIS: Jaimie Noy
Digital Studio Producer: Tanika Henderson
Full-Service Project Manager: Gowthaman
Sadhanandham
Full Service Vendor: Integra Software Service
Pvt. Ltd.
Manufacturing Buyer: LSC Communications,
Maura Zaldivar-Garcia
Text Printe
Bindery: LSC Communications
Cover Printer: Phoenix Colo
ISBN 10: XXXXXXXXXX
ISBN 13: XXXXXXXXXX
Copyright © 2020, 2015, 2011 by Pearson Education, Inc. 221 River Street, Hoboken, NJ XXXXXXXXXXAll
ights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and
permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions. Acknowledgments
of third-party content appear on the appropriate page within the text, which constitutes an extension of this
copyright page. Unless otherwise indicated herein, any third-party trademarks that may appear in this work are
the property of their respective owners and any references to third-party trademarks, logos or other trade dress
are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship
etween the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.
Li
ary of Congress Cataloging-in-Publication Data
Li
ary of Congress Cataloging in Publication Control Number: XXXXXXXXXX
http:
www.pearsoned.com/permissions
iii
Preface xxv
About the Authors xxxiv
PART I Introduction to Analytics and AI 1
Chapter 1 Overview of Business Intelligence, Analytics,
Data Science, and Artificial Intelligence: Systems
for Decision Support 2
Chapter 2 Artificial Intelligence: Concepts, Drivers, Major
Technologies, and Business Applications 73
Chapter 3 Nature of Data, Statistical Modeling, and
Visualization 117
PART II Predictive Analytics/Machine Learning 193
Chapter 4 Data Mining Process, Methods, and Algorithms 194
Chapter 5 Machine-Learning Techniques for Predictive
Analytics 251
Chapter 6 Deep Learning and Cognitive Computing 315
Chapter 7 Text Mining, Sentiment Analysis, and Social
Analytics 388
PART III Prescriptive Analytics and Big Data 459
Chapter 8 Prescriptive Analytics: Optimization and
Simulation 460
Chapter 9 Big Data, Cloud Computing, and Location Analytics:
Concepts and Tools 509
PART IV Robotics, Social Networks, AI and IoT 579
Chapter 10 Robotics: Industrial and Consumer Applications 580
Chapter 11 Group Decision Making, Collaborative Systems, and
AI Support 610
Chapter 12 Knowledge Systems: Expert Systems, Recommenders,
Chatbots, Virtual Personal Assistants, and Robo
Advisors 648
Chapter 13 The Internet of Things as a Platform for Intelligent
Applications 687
PART V Caveats of Analytics and AI 725
Chapter 14 Implementation Issues: From Ethics and Privacy to
Organizational and Societal Impacts 726
Glossary 770
Index 785
BRIEF CONTENTS
iv
CONTENTS
Preface xxv
About the Authors xxxiv
PART I Introduction to Analytics and AI 1
Chapter 1 Overview of Business Intelligence, Analytics, Data
Science, and Artificial Intelligence: Systems for Decision
Support 2
1.1 Opening Vignette: How Intelligent Systems Work for
KONE Elevators and Escalators Company 3
1.2 Changing Business Environments and Evolving Needs for
Decision Support and Analytics 5
Decision-Making Process 6
The Influence of the External and Internal Environments on the Process 6
Data and Its Analysis in Decision Making 7
Technologies for Data Analysis and Decision Support 7
1.3 Decision-Making Processes and Computerized Decision
Support Framework 9
Simon’s Process: Intelligence, Design, and Choice 9
The Intelligence Phase: Problem (or Opportunity) Identification 10
0 APPLICATION CASE 1.1 Making Elevators Go Faster! 11
The Design Phase 12
The Choice Phase 13
The Implementation Phase 13
The Classical Decision Support System Framework 14
A DSS Application 16
Components of a Decision Support System 18
The Data Management Subsystem 18
The Model Management Subsystem 19
0 APPLICATION CASE 1.2 SNAP DSS Helps OneNet Make
Telecommunications Rate Decisions 20
The User Interface Subsystem 20
The Knowledge-Based Management Subsystem 21
1.4 Evolution of Computerized Decision Support to Business
Intelligence/Analytics/Data Science 22
A Framework for Business Intelligence 25
The Architecture of BI 25
The Origins and Drivers of BI 26
Data Warehouse as a Foundation for Business Intelligence 27
Transaction Processing versus Analytic Processing 27
A Multimedia Exercise in Business Intelligence 28
Contents v
1.5 Analytics Overview 30
Descriptive Analytics 32
0 APPLICATION CASE 1.3 Silvaris Increases Business with Visual
Analysis and Real-Time Reporting Capabilities 32
0 APPLICATION CASE 1.4 Siemens Reduces Cost with the Use of Data
Visualization 33
Predictive Analytics 33
0 APPLICATION CASE 1.5 Analyzing Athletic Injuries 34
Prescriptive Analytics 34
0 APPLICATION CASE 1.6 A Specialty Steel Bar Company Uses Analytics
to Determine Available-to-Promise Dates 35
1.6 Analytics Examples in Selected Domains 38
Sports Analytics—An Exciting Frontier for Learning and Understanding
Applications of Analytics 38
Analytics Applications in Healthcare—Humana Examples 43
0 APPLICATION CASE 1.7 Image Analysis Helps Estimate Plant Cover 50
1.7 Artificial Intelligence Overview 52
What Is Artificial Intelligence? 52
The Major Benefits of AI 52
The Landscape of AI 52
0 APPLICATION CASE 1.8 AI Increases Passengers’ Comfort and
Security in Airports and Borders 54
The Three Flavors of AI Decisions 55
Autonomous AI 55
Societal Impacts 56
0 APPLICATION CASE 1.9 Robots Took the Job of Camel-Racing Jockeys
for Societal Benefits 58
1.8 Convergence of Analytics and AI 59
Major Differences between Analytics and AI 59
Why Combine Intelligent Systems? 60
How Convergence Can Help? 60
Big Data Is Empowering AI Technologies 60
The Convergence of AI and the IoT 61
The Convergence with Blockchain and Other Technologies 62
0 APPLICATION CASE 1.10 Amazon Go Is Open for Business 62
IBM and Microsoft Support for Intelligent Systems Convergence 63
1.9 Overview of the Analytics Ecosystem 63
1.10 Plan of the Book 65
1.11 Resources, Links, and the Teradata University Network
Connection 66
Resources and Links 66
Vendors, Products, and Demos 66
Periodicals 67
The Teradata University Network Connection 67
vi Contents
The Book’s Web Site 67
Chapter Highlights 67 • Key Terms 68
Questions for Discussion 68 • Exercises 69
References 70
Chapter 2 Artificial Intelligence: Concepts, Drivers, Major
Technologies, and Business Applications 73
2.1 Opening Vignette: INRIX Solves Transportation
Problems 74
2.2 Introduction to Artificial Intelligence 76
Definitions 76
Major Characteristics of AI Machines 77
Major Elements of AI 77
AI Applications 78
Major Goals of AI 78
Drivers of AI 79
Benefits of AI 79
Some Limitations of AI Machines 81
Three Flavors of AI Decisions 81
Artificial Brain 82
2.3 Human and Computer Intelligence 83
What Is Intelligence? 83
How Intelligent Is AI? 84
Measuring AI 85
0 APPLICATION CASE 2.1 How Smart Can a Vacuum Cleaner Be? 86
2.4 Major AI Technologies and Some Derivatives 87
Intelligent Agents 87
Machine Learning 88
0 APPLICATION CASE 2.2 How Machine Learning Is Improving Work
in Business 89
Machine and Computer Vision 90
Robotic Systems 91
Natural Language Processing 92
Knowledge and Expert Systems and Recommenders 93
Chatbots 94
Emerging AI Technologies 94
2.5 AI Support for Decision Making 95
Some Issues and Factors in Using AI in Decision Making 96
AI Support of the Decision-Making Process 96
Automated Decision Making 97
0 APPLICATION CASE 2.3 How Companies Solve Real-World Problems
Using Google’s Machine-Learning Tools 97
Conclusion 98
Contents vii
2.6 AI Applications in Accounting 99
AI in Accounting: An Overview 99
AI in Big Accounting Companies 100
Accounting Applications in Small Firms 100
0 APPLICATION CASE 2.4 How EY, Deloitte, and PwC Are Using AI 100
Job of Accountants 101
2.7 AI Applications in Financial Services 101
AI Activities in Financial Services 101
AI in Banking: An Overview 101
Illustrative AI Applications in Banking 102
Insurance Services 103
0 APPLICATION CASE 2.5 US Bank Customer Recognition and
Services 104
2.8 AI in Human Resource Management (HRM) 105
AI in HRM: An Overview 105
AI in Onboarding 105
0 APPLICATION CASE 2.6 How Alexander Mann Solutions (AMS) Is
Using AI to Support the Recruiting Process 106
Introducing AI to HRM Operations 106
2.9 AI in Marketing, Advertising, and CRM 107
Overview of Major Applications 107
AI Marketing Assistants in Action 108
Customer Experiences and CRM 108
0 APPLICATION CASE 2.7 Kraft Foods
Answered 1 days After Nov 10, 2022

Solution

Ayan answered on Nov 11 2022
55 Votes
WRITTEN ASSIGNMENT        7
WRITTEN ASSIGNMENT
Table of contents
Introduction    3
Concept Analysis    3
Conclusion    6
References    8
Introduction
    Given the huge volumes of data being made today, data science is, in my experience, an essential part of many organizations. It is additionally perhaps the most controversial subject in IT circles. Since data science has become increasingly well known, organizations have started to utilize it to grow their tasks and further develop shopper satisfaction. The reason for data science in the cu
ent day, as I would see it, is to help associations in dissecting and settling cu
ent and expected future hardships. Moreover, it very well might be utilized to speak with others and spread data about the thing happening around the globe. Both AI and machine learning are developing thanks to data science. The differences between AI, machine learning, and data science as they pertain to callings, abilities, schooling, and more will be more clear to you subsequent to perusing this article. Despite the fact that there is conflict over how to characterize artificial intelligence co
esponding to data science, a part of computer science centers around making machines with adaptable intelligence that are equipped for utilizing data to tackle complex issues, learning from those a
angements, and settling on repeatable choices at scale.
Concept Analysis
    Predictive analysis using data mining and machine learning is unquestionably the idea in this entire course that I find most fascinating. Data science subjects like Deep Learning, Machine Learning, and Artificial Intelligence are very specialized (Yahaya, Oye & Ga
a, 2020). The fields of computer vision, speech and audio processing, and natural language processing have all seen a positive outcome with deep learning. In contrast with traditional machine learning algorithms, it offers a high learning capacity that might expand the utilization of datasets for include extraction. The basic part of building a deep
ain network is the perceptron. The more adaptable computational model is the perceptron one. It is a helpful instrument for data analytics since it looks at solo data. Data scientists aid in the extension and improvement of AI. They foster algorithms that
eak down data to find examples and relationships, which AI can then use to fa
icate prediction models that draw significance from the data. AI is a technology that data scientists use to understand data and aid business navigation. Artificial intelligence is made attainable by the discipline of machine learning, which enables computers to emulate the human way of behaving and complete human-like exercises using data. The differentiation between machine learning and artificial intelligence is that the previous aims to permit AI through independent programming and learning (Namoun & Alshanqiti, 2020). Data scientists foster the algorithms that empower machine learning, which is the way they shift from machine learning. Machine learning is one more technology utilized by data scientists to get importance from data. In contemporary life, machine learning is unavoidable. It...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here