Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

id,lcavol,lweight,age,lbph,svi,lcp,gleason,pgg45,lpsa 1, XXXXXXXXXX, XXXXXXXXXX,50, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX 2, XXXXXXXXXX, XXXXXXXXXX,58, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX 3,...

1 answer below »
id,lcavol,lweight,age,lbph,svi,lcp,gleason,pgg45,lpsa
1, XXXXXXXXXX, XXXXXXXXXX,50, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
2, XXXXXXXXXX, XXXXXXXXXX,58, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
3, XXXXXXXXXX, XXXXXXXXXX,74, XXXXXXXXXX,0, XXXXXXXXXX,7,20, XXXXXXXXXX
4, XXXXXXXXXX, XXXXXXXXXX,58, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
5, XXXXXXXXXX, XXXXXXXXXX,62, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
6, XXXXXXXXXX, XXXXXXXXXX,50, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
7, XXXXXXXXXX, XXXXXXXXXX,64, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
8, XXXXXXXXXX, XXXXXXXXXX,58, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
9, XXXXXXXXXX, XXXXXXXXXX,47, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
10, XXXXXXXXXX, XXXXXXXXXX,63, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
11, XXXXXXXXXX, XXXXXXXXXX,65, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
12, XXXXXXXXXX, XXXXXXXXXX,63, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
13, XXXXXXXXXX, XXXXXXXXXX,63, XXXXXXXXXX,0, XXXXXXXXXX,7,30, XXXXXXXXXX
14, XXXXXXXXXX, XXXXXXXXXX,67, XXXXXXXXXX,0, XXXXXXXXXX,7,5, XXXXXXXXXX
15, XXXXXXXXXX, XXXXXXXXXX,57, XXXXXXXXXX,0, XXXXXXXXXX,7,5, XXXXXXXXXX
16, XXXXXXXXXX, XXXXXXXXXX,66, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
17, XXXXXXXXXX, XXXXXXXXXX,70, XXXXXXXXXX,0, XXXXXXXXXX,7,30, XXXXXXXXXX
18, XXXXXXXXXX, XXXXXXXXXX,66, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
19, XXXXXXXXXX, XXXXXXXXXX,41, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
20, XXXXXXXXXX, XXXXXXXXXX,70, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
21, XXXXXXXXXX, XXXXXXXXXX,59, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
22, XXXXXXXXXX, XXXXXXXXXX,60, XXXXXXXXXX,0, XXXXXXXXXX,7,20, XXXXXXXXXX
23, XXXXXXXXXX, XXXXXXXXXX,59, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
24, XXXXXXXXXX, XXXXXXXXXX,63, XXXXXXXXXX,0, XXXXXXXXXX,7,60, XXXXXXXXXX
25, XXXXXXXXXX,3.6674,69, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
26, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
27, XXXXXXXXXX, XXXXXXXXXX,65, XXXXXXXXXX,0, XXXXXXXXXX,7,70, XXXXXXXXXX
28, XXXXXXXXXX, XXXXXXXXXX,67, XXXXXXXXXX,0, XXXXXXXXXX,7,20, XXXXXXXXXX
29, XXXXXXXXXX, XXXXXXXXXX,67, XXXXXXXXXX,0, XXXXXXXXXX,7,80, XXXXXXXXXX
30, XXXXXXXXXX, XXXXXXXXXX,65, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
31, XXXXXXXXXX, XXXXXXXXXX,65, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
32, XXXXXXXXXX, XXXXXXXXXX,65, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
33, XXXXXXXXXX, XXXXXXXXXX,71, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
34, XXXXXXXXXX, XXXXXXXXXX,54, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
35, XXXXXXXXXX, XXXXXXXXXX,63, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
36, XXXXXXXXXX,4.11985,64, XXXXXXXXXX,0, XXXXXXXXXX,7,5, XXXXXXXXXX
37, XXXXXXXXXX, XXXXXXXXXX,73, XXXXXXXXXX,0, XXXXXXXXXX,8,15, XXXXXXXXXX
38, XXXXXXXXXX, XXXXXXXXXX,64, XXXXXXXXXX,0, XXXXXXXXXX,7,15, XXXXXXXXXX
39, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,1, XXXXXXXXXX,7,35, XXXXXXXXXX
40, XXXXXXXXXX, XXXXXXXXXX,56, XXXXXXXXXX,0, XXXXXXXXXX,7,5, XXXXXXXXXX
41, XXXXXXXXXX, XXXXXXXXXX,60, XXXXXXXXXX,0, XXXXXXXXXX,9,80, XXXXXXXXXX
42, XXXXXXXXXX,3.68261,68, XXXXXXXXXX,0, XXXXXXXXXX,7,10, XXXXXXXXXX
43, XXXXXXXXXX, XXXXXXXXXX,62, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
44, XXXXXXXXXX, XXXXXXXXXX,61, XXXXXXXXXX,0, XXXXXXXXXX,7,6, XXXXXXXXXX
45, XXXXXXXXXX, XXXXXXXXXX,66, XXXXXXXXXX,0, XXXXXXXXXX,7,20, XXXXXXXXXX
46, XXXXXXXXXX, XXXXXXXXXX,61, XXXXXXXXXX,0, XXXXXXXXXX,7,15, XXXXXXXXXX
47, XXXXXXXXXX, XXXXXXXXXX,79, XXXXXXXXXX,1, XXXXXXXXXX,9,100, XXXXXXXXXX
48, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,0, XXXXXXXXXX,7,40, XXXXXXXXXX
49, XXXXXXXXXX, XXXXXXXXXX,43, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
50, XXXXXXXXXX, XXXXXXXXXX,70, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
51, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,0, XXXXXXXXXX,7,50, XXXXXXXXXX
52, XXXXXXXXXX, XXXXXXXXXX,64, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
53, XXXXXXXXXX, XXXXXXXXXX,64, XXXXXXXXXX,0, XXXXXXXXXX,7,70, XXXXXXXXXX
54, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,0, XXXXXXXXXX,7,40, XXXXXXXXXX
55, XXXXXXXXXX, XXXXXXXXXX,59, XXXXXXXXXX,0, XXXXXXXXXX,7,5, XXXXXXXXXX
56, XXXXXXXXXX, XXXXXXXXXX,66, XXXXXXXXXX,0, XXXXXXXXXX,7,15, XXXXXXXXXX
57, XXXXXXXXXX, XXXXXXXXXX,47, XXXXXXXXXX,0, XXXXXXXXXX,7,4, XXXXXXXXXX
58, XXXXXXXXXX, XXXXXXXXXX,49, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
59, XXXXXXXXXX, XXXXXXXXXX,70, XXXXXXXXXX,0, XXXXXXXXXX,7,20, XXXXXXXXXX
60, XXXXXXXXXX, XXXXXXXXXX,61, XXXXXXXXXX,0, XXXXXXXXXX,7,40, XXXXXXXXXX
61, XXXXXXXXXX, XXXXXXXXXX,73, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
62, XXXXXXXXXX, XXXXXXXXXX,63, XXXXXXXXXX,1, XXXXXXXXXX,7,40, XXXXXXXXXX
63, XXXXXXXXXX, XXXXXXXXXX,72, XXXXXXXXXX,0, XXXXXXXXXX,9,95, XXXXXXXXXX
64, XXXXXXXXXX, XXXXXXXXXX,66, XXXXXXXXXX,1, XXXXXXXXXX,7,60, XXXXXXXXXX
65, XXXXXXXXXX, XXXXXXXXXX,64, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
66, XXXXXXXXXX, XXXXXXXXXX,61, XXXXXXXXXX,0, XXXXXXXXXX,7,20, XXXXXXXXXX
67, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,0, XXXXXXXXXX,7,70, XXXXXXXXXX
68, XXXXXXXXXX, XXXXXXXXXX,72, XXXXXXXXXX,0, XXXXXXXXXX,7,10, XXXXXXXXXX
69, XXXXXXXXXX, XXXXXXXXXX,69, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
70, XXXXXXXXXX, XXXXXXXXXX,72, XXXXXXXXXX,0, XXXXXXXXXX,7,5, XXXXXXXXXX
71, XXXXXXXXXX, XXXXXXXXXX,60, XXXXXXXXXX,1, XXXXXXXXXX,7,60, XXXXXXXXXX
72, XXXXXXXXXX, XXXXXXXXXX,77, XXXXXXXXXX,0, XXXXXXXXXX,7,25, XXXXXXXXXX
73, XXXXXXXXXX, XXXXXXXXXX,69, XXXXXXXXXX,1, XXXXXXXXXX,7,20, XXXXXXXXXX
74, XXXXXXXXXX, XXXXXXXXXX,60, XXXXXXXXXX,1, XXXXXXXXXX,9,90, XXXXXXXXXX
75, XXXXXXXXXX, XXXXXXXXXX,69, XXXXXXXXXX,1, XXXXXXXXXX,7,20, XXXXXXXXXX
76, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,1, XXXXXXXXXX,7,50, XXXXXXXXXX
77, XXXXXXXXXX, XXXXXXXXXX,72, XXXXXXXXXX,0, XXXXXXXXXX,7,60, XXXXXXXXXX
78, XXXXXXXXXX, XXXXXXXXXX,78, XXXXXXXXXX,0, XXXXXXXXXX,7,10, XXXXXXXXXX
79, XXXXXXXXXX, XXXXXXXXXX,69, XXXXXXXXXX,1, XXXXXXXXXX,7,70, XXXXXXXXXX
80, XXXXXXXXXX, XXXXXXXXXX,63, XXXXXXXXXX,0, XXXXXXXXXX,7,50, XXXXXXXXXX
81, XXXXXXXXXX, XXXXXXXXXX,66, XXXXXXXXXX,0, XXXXXXXXXX,7,40, XXXXXXXXXX
82, XXXXXXXXXX, XXXXXXXXXX,57, XXXXXXXXXX,0, XXXXXXXXXX,7,60, XXXXXXXXXX
83, XXXXXXXXXX, XXXXXXXXXX,77, XXXXXXXXXX,1, XXXXXXXXXX,7,30, XXXXXXXXXX
84, XXXXXXXXXX, XXXXXXXXXX,65, XXXXXXXXXX,0, XXXXXXXXXX,9,70, XXXXXXXXXX
85, XXXXXXXXXX, XXXXXXXXXX,60, XXXXXXXXXX,0, XXXXXXXXXX,7,30, XXXXXXXXXX
86, XXXXXXXXXX, XXXXXXXXXX,64, XXXXXXXXXX,1, XXXXXXXXXX,7,60, XXXXXXXXXX
87, XXXXXXXXXX, XXXXXXXXXX,58, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
88, XXXXXXXXXX, XXXXXXXXXX,62, XXXXXXXXXX,1, XXXXXXXXXX,7,30, XXXXXXXXXX
89, XXXXXXXXXX, XXXXXXXXXX,65, XXXXXXXXXX,1, XXXXXXXXXX,7,60, XXXXXXXXXX
90, XXXXXXXXXX,3.69511,76, XXXXXXXXXX,1, XXXXXXXXXX,7,75, XXXXXXXXXX
91, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,0, XXXXXXXXXX,6,0, XXXXXXXXXX
92, XXXXXXXXXX, XXXXXXXXXX,61, XXXXXXXXXX,1, XXXXXXXXXX,7,15, XXXXXXXXXX
93, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,1, XXXXXXXXXX,7,60, XXXXXXXXXX
94, XXXXXXXXXX, XXXXXXXXXX,44, XXXXXXXXXX,1, XXXXXXXXXX,7,40, XXXXXXXXXX
95, XXXXXXXXXX, XXXXXXXXXX,52, XXXXXXXXXX,1, XXXXXXXXXX,7,10, XXXXXXXXXX
96, XXXXXXXXXX,3.77391,68, XXXXXXXXXX,1, XXXXXXXXXX,7,80, XXXXXXXXXX
97, XXXXXXXXXX, XXXXXXXXXX,68, XXXXXXXXXX,1, XXXXXXXXXX,7,20, XXXXXXXXXX

PS3

PS3
Answered 1 days After Apr 27, 2021

Solution

Bikram answered on Apr 28 2021
152 Votes
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemi
or_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"colab": {
"name": "bicrxmsolution.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "0xUIicWGVNH-"
},
"source": [
"# Problem Set \\#3: Due Friday, April 30th by 4:30 pm EDT\n",
"\n",
"Answer the questions below. This notebook will be your workspace so add cells as you please. When you are finished, you will submit two objects to eLC:\n",
"\n",
"1. **Written pdf Report.**
font> This should be short. You should include:\n",
" * the figure you create describing data variation (Exercise 1).\n",
" * the table of results (Exercise 3).\n",
" * discussion of results (Exercise 3)\n",
"\n",
" Your analysis should be professional: i.e., well-written, clear, and concise. Figures should be incorporated in your analysis. For example, it would be useful to set the title of each figure in this notebook (eg, \"Figure 1: Data Variation ...\") so in the final report you can reference the figure in the appopriate commentary. Save your report as a pdf (\"File/Save As Adobe PDF\") with the naming convention **'PS3_Report_[insert last name]'**. For example, ''PS3_Report_Thurk.pdf'. \n",
"\n",
"\n",
"2. **Jupyter Notebook.**
font> Print the notebook as a pdf. [To print: From the file menu, choose 'print preview'. A new tab will open with the notebook presented as html. Print as a pdf.] Save your pdf notebook with the naming conention **'PS3_Workbook_[insert last name]'**. For example, 'PS3_Workbook_Thurk.pdf'. Think of the notebook as your opportunity to show your work.\n",
"\n",
"**Grading:** The problem set is worth **100 points** and partial credit is indicated for each exercise. I will grade your report (1) and use your notebook (2) to assign partial credit in the event there are e
ors.\n",
"\n",
"\n",
"**A reminder:** My office hours are Wednesdays 2:00PM-4:00PM EDT. Zoom information is located on the eLC course page. I'll host extra office hours friday as well.\n",
"\n",
"*You should feel free to work on this with classmates but the work you submit must be your own.*"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xxWE0t3WVNIN"
},
"source": [
"# Exercise 1: Exploratory Data Analysis
font> [30 points]\n",
"\n",
"The file \"prostate.csv\" contains data from a 1989 scientific [study](https:
pubmed.ncbi.nlm.nih.gov/2468795/) on prostate cancer. The data includes 8 predictors and the outcome of interest is lpsa (log prostate specific antigen).\n",
"\n",
"### Part (a): Load the data. [10 points]"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https:
localhost:8080/",
"height": 206
},
"id": "cJ350cXPVNIO",
"outputId": "a37beed7-dc29-4e3e-e69c-3d0c9c8ee0dd"
},
"source": [
"import pandas as pd\n",
"\n",
"df=pd.read_csv('prostate-oscidvgo.csv')\n",
"df.head()"
],
"execution_count": 2,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"