{
"cells": [
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Slope is 0.9523809523809523\n",
"intercept term is 14.571428571428573\n",
"Regression equation is 14.571428571428573 + 0.9523809523809523 x\n",
"Mean square e
or is 36.05714285714286\n",
"R-Square value is 0.8094231350045303\n",
"The maintenance cost is 16.476190476190478\n"
]
}
],
"source": [
"#1\n",
"import numpy as np\n",
"import itertools\n",
"op_hr=[18,6,30,48,6,36,18,18,30,36]\n",
"main_cost=[25,17,48,58,23,40,30,39,40,60]\n",
"mean_op_hr=np.mean(op_hr)\n",
"mean_main_cost=np.mean(main_cost)\n",
"sum1=0\n",
"for (i,j) in zip(op_hr,main_cost):\n",
" val=(i-mean_op_hr)*(j-mean_main_cost)\n",
" sum1=sum1+val\n",
"sum2=0\n",
"for i in op_hr:\n",
" val1=(i-mean_op_hr)**2\n",
" sum2=sum2+val1\n",
"slope=sum1/sum2\n",
"print(\"Slope is\",slope)\n",
"intercept=mean_main_cost-slope*mean_op_hr\n",
"print(\"intercept term is\",intercept)\n",
"print(\"Regression equation is\",intercept,\"+\",slope,\"x\")\n",
"#calculating mean square e
or\n",
"pred=[]\n",
"for i in op_hr:\n",
" predict=intercept+slope*i\n",
" pred.append(predict)\n",
"e
or=0\n",
"for (i,j) in zip(main_cost,pred):\n",
" val2=(i-j)**2\n",
" e
or=e
or+val2\n",
"mse=e
o
len(main_cost)\n",
"print(\"Mean square e
or is\",mse)\n",
"#R-square calculation\n",
"ss_total=0\n",
"for i in main_cost:\n",
" val3=(i-mean_main_cost)**2\n",
" ss_total=ss_total+val3\n",
"r_square=1-(e
o
ss_total)\n",
"print(\"R-Square value is\",r_square)\n",
"#Prediction when operation hours increases 2 hours\n",
"prediction=intercept+slope*2\n",
"print(\"The maintenance cost is\",prediction)"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"