Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Theory (60 points) 1. (1) Explain what is wrong with the following statements, and (2) correct it. a. There is a chance 60% of purchasing item A and 75% of purchasing item B, and purchasing item A and...

1 answer below »
Theory (60 points)
1. (1) Explain what is wrong with the following statements, and (2) co
ect it.
a. There is a chance 60% of purchasing item A and 75% of purchasing item B, and purchasing item A and B is independent. Then there is a 135% chance of purchasing both items. (10 points)
. 80% of our graduate students are working on companies. Of the students working on companies, only 10% are working on FANNG. Hence, 70% of our graduate students are working on companies except for FANNG. (10 points)
2. Three professors at George Washington University experimented to determine if economists are more selfish than other people. They dropped 64 stamped, addressed envelopes with $10 cash in different classrooms on the George Washington campus. 44% were returned overall. From the economics classes, 56% of the envelopes were returned. From the business, psychology, and history classes 31% were returned. Let: R = money returned; E = economics classes; O = other classes
a. Write a probability statement for the overall percent of money returned. (2 points)
. Write a probability statement for the percent of money returned out of the economics classes. (2 points)
c. Write a probability statement for the percent of money returned out of the other classes. (2 points)
d. Is money being returned independent of the class? Justify your answer numerically and explain it. (2 points)
e. Based upon this study, do you think that economists are more selfish than other people? Explain why or why not. (2 points)
3. At a college, 72% of courses have final exams and 46% of courses require research papers. Suppose that 32% of courses have a research paper and a final exam. Let F be the event that a course has a final exam. Let R be the event that a course requires a research paper.
a. P(F ∩ R) and P(F U R). (2 points)
. Find the probability that a course has a final exam or a research project (just a number). (4 points)
c. Find the probability that a course has NEITHER of these two requirements (just a number). (4 points)
4. You have 10 blue tiles, 5 red tiles, and 5 green tiles (without replacement).
a. How many patterns can you make with these tiles? (10 points)
. How many patterns can you make starting with blue? (10 points)
Practice (40 points)
1. Find “UniversalBank.csv” and load it using pandas.
2. Show how many data you have through dataframe. (5 points)
3. Show its descriptive statistics. (5 points)
4. Pick only Age, Experience, Income, Family, Education, and PersonalLoan. (10 points)
5. Show the descriptive statistics and draw histograms for PersonalLoan = 0. (5 points)
6. Show the descriptive statistics and draw histograms for PersonalLoan = 1. (5 points)
7. Which factor(s) (Age, Experience, Income, Family, and Education) is meaningful to distinguish status of PersonalLoan based on histograms? (10 points)
Answered Same Day Sep 07, 2021

Solution

Suraj answered on Sep 08 2021
158 Votes
{
"cells": [
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ID Age Experience Income ZIPCode Family CCAvg Education Mortgage \\\n",
"0 1 25 1 49 91107 4 1.6 1 0 \n",
"1 2 45 19 34 90089 3 1.5 1 0 \n",
"2 3 39 15 11 94720 1 1.0 1 0 \n",
"3 4 35 9 100 94112 1 2.7 2 0 \n",
"4 5 35 8 45 91330 4 1.0 2 0 \n",
"\n",
" PersonalLoan SecuritiesAccount CDAccount Online CreditCard \n",
"0 0 1 0 0 0 \n",
"1 0 1 0 0 0 \n",
"2 0 0 0 0 0 \n",
"3 0 0 0 0 0 \n",
"4 0 0 0 0 1 \n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARJ0lEQVR4nO3df6jdd33H8efLVKt0dW3tbcySaCoEXSo2lUtU6kSNs3EtprBV4ua8SEf+qcPBhqRjTBwL1D8mCrNCqD/C1JVLXWmmoA1x3RBm2xuts2maNWtrcknaXHVF6yAl8b0/zrdwmntv7knuvTnJ5z4fcPl+v5/z+Z7zPh+S1/3czznfc1JVSJLa8rJhFyBJWniGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4a4lLckDSf43ycXDrkVaSIa7lqwka4DfAwr44FCLkRaY4a6l7KPAD4CvAmMvNiZ5TZJ/TfLLJA8n+fsk3++7/U1Jdif5RZIDST507kuXTu+iYRcgDdFHgc8CDwI/SLK8qp4FvgD8GngtsAb4LvBTgCSXALuBvwU+ALwFuD/Jvqrad86fgTQLZ+5akpK8E3g9MF5Ve4H/Af44yTLgD4FPVdX/VdVjwM6+U28Cnq6qr1TViar6IfBN4I/O8VOQTstw11I1BtxfVT
j
RtY3Q+4v2cF/f/v3XA29L8tyLP8Cf0JvlS+cNl2W05CR5FfAhYFmSZ7rmi4HLgOXACWAV8N/dbav7Tj8M/HtV/f45Klc6K/Ejf7XUJPkwvXX19cALfTeNAw/TC/aTwJ8BrwPuBw5V1TuTXAo8CvwNcHd33nrg+araf26egTQ3l2W0FI0BX6mqQ1X1zIs/wD/SW2L5OPDbwDPAPwH/DBwHqKpfAe8HtgBHuj6foTfzl84bztylOST5DPDaqhqbs7N0nnDmLp2iex/7W9KzAbgVuHfYdUlnwhdUpekupbcU8zvAMeAfgPuGWpF0hlyWkaQGuSwjSQ06L5Zl
zyylqzZs2wy5CkC8revXt/VlUjM912XoT7mjVrmJiYGHYZknRBSfLT2W5zWUaSGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhp0XlyhKun8sm
t4fyuE/fceNQHrdFztwlqUGGuyQ1aKBwT3JZknuSPJ5kf5J3JLkiye4kT3Tby/v6357kYJIDSW5YvPIlSTMZdOb+eeA7VfUm4FpgP7AN2FNVa4E93TFJ1tH78uBrgE3AnUmWLXThkqTZzRnuSV4NvAv4EkBVvVBVzwGbgZ1dt53Azd3+ZuDuqjpeVU8BB4ENC124JGl2g8zc3wBMAV9J8qMkdyW5BFheVUcBuu1VXf+VwOG+8ye7tpdIsjXJRJKJqampeT0JSdJLDRLuFwFvBb5YVdcBv6ZbgplFZmib9kWtVbWjqkaranRkZMYvEpEknaVBwn0SmKyqB7vje+iF
NJVgB022N9/Vf3nb8KOLIw5UqSBjFnuFfVM8DhJG/smjYCjwG7gLGubQy4r9vfBWxJcnGSq4G1wEMLWrUk6bQGvUL1z4GvJ3kF8CTwMXq/GMaT3AocAm4BqKp9Scbp/QI4AdxWVScXvHJJ0qwGCveqegQYneGmjbP03w5sn0ddkqR58ApVSWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkF+QfQEa1pcXg19gLF0onLlLUoMMd0lqkOEuSQ1yzV2aw7Be4/D1Dc2HM3dJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDRoo3JM8neQnSR5JMtG1XZFkd5Inuu3lff1vT3IwyYEkNyxW8ZKkmZ3JzP09VbW+qka7423AnqpaC+zpjkmyDtgCXANsAu5MsmwBa5YkzWE+yzKbgZ3d/k7g5r72u6vqeFU9BRwENszjcSRJZ2jQcC/g/iR7k2zt2pZX1VGAbntV174SONx37mTX9hJJtiaZSDIxNTV1dtVLkmY06Ef+Xl9VR5JcBexO8vhp+maGtprWULUD2AEwOjo67XZJ0tkbaOZeVUe67THgXnrLLM8mWQHQbY913SeB1X2nrwKOLFTBkqS5zRnuSS5JcumL+8D7gUeBXcBY120MuK
3wVsSXJxkquBtcBDC124JGl2gyzLLAfuTfJi/29U1XeSPAyMJ7kVOATcAlBV+5KMA48BJ4DbqurkolQvSZrRnOFeVU8C187Q/nNg4yznbAe2z7s6SdJZ8QpVSWqQX5CtC8KwvqRaulA5c5ekBjlzl85T
Wi+XDmLkkNMtwlqUEuy0g6bwxrKerpO24cyuMuJmfuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUG+FVJnxKsmpQuDM3dJapAz93lwFivpfOXMXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGjRwuCdZluRHSb7VHV+RZHeSJ7rt5X19b09yMMmBJDcsRuGSpNmdycz9E8D+vuNtwJ6qWgvs6Y5Jsg7YAlwDbALuTLJsYcqVJA1ioHBPsgq4Ebi
3kzsLPb3wnc3Nd+d1Udr6qngIPAhoUpV5I0iEFn7p8DPgn8pq9teVUdBei2V3XtK4HDff0mu7aXSLI1yUSSiampqTMuXJI0uznDPclNwLGq2jvgfWaGtprWULWjqkaranRkZGTAu5YkDWKQj/y9Hvhgkj8AXgm8OsnXgGeTrKiqo0lWAMe6/pPA6r7zVwFHFrJoSdLpzTlzr6
q2pVVa2h90Lp96rqI8AuYKzrNgbc1+3vArYkuTjJ1cBa4KEFr1ySNKv5fFnHHcB4kluBQ8AtAFW1L8k48BhwAritqk7Ou1JJ0sDOKNyr6gHggW7/58DGWfptB7bPszZJ0lnyClVJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KD5gz3JK9M8lCSHyfZl+TTXfsVSXYneaLbXt53zu1JDiY5kOSGxXwCkqTpBpm5HwfeW1XXAuuBTUneDmwD9lTVWmBPd0ySdcAW4BpgE3BnkmWLUbwkaWZzhnv1PN8dvrz7KWAzsLNr3wnc3O1vBu6uquNV9RRwENiwoFVLkk5roDX3JMuSPAIcA3ZX1YPA8qo6CtBtr+q6rwQO950+2bWdep9bk0wkmZiamprPc5AknWKgcK+qk1W1HlgFbEjy5tN0z0x3McN97qiq0aoaHRkZGaxaSdJAzujdMlX1HPAAvbX0Z5OsAOi2x7puk8DqvtNWAUfmXakkaWCDvFtmJMll3f6rgPcBjwO7gLGu2xhwX7e/C9iS5OIkVwNrgYcWunBJ0uwuGqDPCmBn946XlwHjVfWtJP8JjCe5FTgE3AJQVfuSjAOPASeA26rq5OKUL0mayZzhXlX/BVw3Q/vPgY2znLMd2D7v6iRJZ8UrVCWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDBnmfuyQ1bc22bw/tsZ++48ZFuV9n7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGNXER0zAvQJCk85Ezd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatCc4Z5kdZJ/S7I/yb4kn+jar0iyO8kT3fbyvnNuT3IwyYEkNyzmE5AkTTfIzP0E8JdV9bvA24HbkqwDtgF7qmotsKc7prttC3ANsAm4M8myxShekjSzOcO9qo5W1Q+7/V8B+4GVwGZgZ9dtJ3Bzt78ZuLuqjlfVU8BBYMNCFy5Jmt0Z
knWQNcBzwILK+qo9D7BQBc1XVbCRzuO22yazv1vrYmmUgyMTU1deaVS5JmNXC4J/kt4JvAX1TVL0/XdYa2mtZQtaOqRqtqdGRkZNAyJEkDGCjck7ycXrB/var+pWt+NsmK7vYVwLGufRJY3Xf6KuDIwpQrSRrEIO+WCfAlYH9Vf
vpl3AWLc/BtzX174lycVJrgbWAg8tXMmSpLkM8mUd1wN/CvwkySNd218DdwDjSW4FDgG3AFTVviTjwGP03mlzW1WdXPDKJUmzmjPcq+r7zLyODrBxlnO2A9vnUZckaR68QlWSGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktSgOcM9yZeTHEvyaF
FUl2J3mi217ed9vtSQ4mOZDkhsUqXJI0u0Fm7l8FNp3Stg3YU1VrgT3dMUnWAVuAa7pz7kyybMGqlSQNZM5wr6
AH5xSvNmYGe3vxO4ua/97qo6XlVPAQeBDQtUqyRpQGe75r68qo4CdNuruvaVwOG+fpNd2zRJtiaZSDIxNTV1lmVIkmay0C+oZoa2mqljVe2oqtGqGh0ZGVngMiRpaTvbcH82yQqAbnusa58EVvf1WwUcOfvyJEln42zDfRcw1u2PAff1tW9JcnGSq4G1wEPzK1GSdKYumqtDkn8G3g1cmWQS+BRwBzCe5FbgEHALQFXtSzIOPAacAG6rqpOLVLskaRZzhntVfXiWmzbO0n87sH0+RUmS5scrVCWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYsW7kk2JTmQ5GCSbYv1OJKk6RYl3JMsA74AfABYB3w4y
FeCxJ0nSLNXPfABysqier6gXgbmDzIj2WJOkUFy3S/a4EDvcdTwJv6++QZCuwtTt8PsmBRarlQnAl8LNhF3GecUymc0ymu+DHJJ+Z1+mvn+2GxQr3zNBWLzmo2gHsWKTHv6Akmaiq0WHXcT5xTKZzTKZzTGa3WMsyk8DqvuNVwJFFeixJ0ikWK9wfBtYmuTrJK4AtwK5FeixJ0ikWZVmmqk4k+TjwXWAZ8OWq2rcYj9UIl6emc0ymc0ymc0xmkaqau5ck6YLiFaqS1CDDXZIaZLifQ0lemeShJD9Osi/Jp7v2K5LsTvJEt7182LWea0mWJflRkm91x45J8nSSnyR5JMlE17akxyXJZUnuSfJ4kv1J3rHUx2Q2hvu5dRx4b1VdC6wHNiV5O7AN2FNVa4E93fFS8wlgf9+xY9Lznqpa3/de7qU+Lp8HvlNVbwKupfdvZqmPyYwM93Ooep7vDl/e/RS9j2bY2bXvBG4eQnlDk2QVcCNwV1/zkh6T01iy45Lk1cC7gC8BVNULVfUcS3hMTsdwP8e65YdHgGPA7qp6EFheVUcBuu1Vw6xxCD4HfBL4TV
Uh8T6P3ivz/J3u7jOmBpj8sbgCngK90S3l1JLmFpj8msDPdzrKpOVtV6elftbkjy5mHXNExJbgKOVdXeYddyHrq+qt5K79NVb0vyrmEXNGQXAW8FvlhV1wG/xiWYWRnuQ9L9OfkAsAl4NskKgG57bIilnWvXAx9M8jS9Tw99b5KvsbTHBICqOtJtjwH30vu01aU8LpPAZPfXLsA99MJ+KY/JrAz3cyjJSJLLuv1XAe8DHqf30QxjXbcx4L7hVHjuVdXtVbWqqtbQ+5iK71XVR1jCYwKQ5JIkl764D7wfeJQlPC5V9QxwOMkbu6aNwGMs4TE5Ha9QPYeSvIXeCz7L6P1iHa+qv0vyGmAceB1wCLilqn4xvEqHI8m7gb+qqpuW+pgkeQO92Tr0liO+UVXbHZesp/fC+yuAJ4GP0f1fYomOyWwMd0lqkMsyktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ16P8BMF6oIdNtSbAAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASuElEQVR4nO3df5BdZ33f8ffHsjEMP2o7ljRCEsilasAm2KSLcEsmISiNBSaR/4gzIg2o4ERtxyFmEkpl2g6TH8o4M82vTusWgY1FA3EUSGIFMmk0Cj+SNLGQwfyQhcYKcqyNhLXgmh9pq4yc
+4j8dXq13v1WpXKz37fs3snHOe85xzv/uM/Nnj5957TqoKSVJfLlroAiRJc89wl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEujSDJf0/yHxe6DmlU8XPuktQfr9ylGSRZstA1SGfKcNd5L8kLk3w0yUSSw0l+OskVScaT/FDr87wkh5K8pW3f06ZSdif5VpJPJXnx0Dlf2vY9nuRgkh8d2ndPkv+W5A+T/C3w/a3tF4f6vDHJg0meSPK/krxiaN8jSd6Z5AtJvpHkt5M8e2j/xnbsN5P8VZINrf0fJLkrybEkf5PkF/3Dotky3HVeS3IR8AfA54GVwHrgHcCrgLcB70uyDPg14MGq+uDQ4f8C+AXgSuBB4EPtnM8FdgMfBpYBbwLuTHLN0LE/BmwDng/82aSavhu4G/hXwHcA7wV2Jbl0qNuPAhuAq4BXAP+yHbsO+CDwb4HLgO8FHmnH7ABOAv8IeCXwg8BPjDxY0pCLF7oAaQavApZW1c+37a8keR+wqaremuR3gD0MQva7Jh378ar6NECSfw98I8lq4J8Bj1TVB1q/zyb5KPAjwP7Wdl9V/Xl
39Jhs/7k8B7q+r+tr0jybuB64FPt
XFVH22v/AXBda78FuLuqdrftv2l9lgOvBy6rqv8L/G2SXwO2MPjjIZ0Rw13nuxcDL0zyxFDbEuBP2/p24KeAX6qqr0869shTK1X17SSPAy9s53z1pHNeDPyPqY6dpqbNSd4+1Pasdu6nfHVo/f8M7VsN/OE057wEODb0h+SiGeqQpmW463x3BDhcVWsn72jz0e9lMM3xb5J8oKoODXVZPdT3ecAVwNF2zk9V1T9/htd9po+RHQG2VdW20X+NU459yTTtJ4Arq+rkLM4rncI5d53v9gLfTPLvkjwnyZIkL0/yKuDdrc
gP8EfHDSG5BvSPI9SZ7FYO79/qo6AnwM+MdJ3pzkkvbzqiQvG7Gm9wH/OsmrM/DcJDcmef4Ix94FvDXJ+iQXJVmZ5KVVdQz4Y+BXkryg7XtJku8bsSbpFIa7zmtV9STwQwzmrA8DXwPeD7wO+BngLa3PLzO42t46dPiHgfcAjwP/hME
FTVtxi8WbmJwZX8V9vxw2+IPlNN+xjMu/8X4H8Dh2hvmI5w7F7grQzeAP4Ggzn6pz7F8xYG0zsPtfN+BFgxynmlyfwSk7qU5B5gvKr+w0LXIi0Er9wlqUOGuyR1yGkZSeqQV+6S1KHz4nPuV155Za1Zs2ahy5CkC8oDDzzwtapaOtW+8yLc16xZw759+xa6DEm6oCT56+n2OS0jSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOjRSuCe5LMlHknw5yYEk/7Q9w3J3kofb8vKh
e351keTHLD/JUvSZrKqFfuvwH8UVW9FLgWOMDg1qp72kMU9rRtklzN4Faq1zB4huSdPuRXks6tGcM9yQsYPMT3LoCq+ruqegLYyOCBvrTlTW19I3BvVZ2oqsMM7nW9bq4LlyRNb5RvqP5DYAL4QJJrgQeA24Dl7ekxVNWx9gR6GDyh/i+Hjh9vbadIsoXBw3950YteNOtfQOrVmq0fX7DXfuSOGxfstTU3Rgn3i4HvBt5eVfcn+Q1OfdrNZJmi7bRbT1bVdgYPN2ZsbMxbU+q8tZAhK83WKHPu4wyeaHN/2/4Ig7B/LMkKgLY8PtR/9dDxqxg8ykySdI7MGO5V9VXgSJLvbE3rGTzjcRewubVtBu5r67uATUkuTXIVsJbBQ44lSefIqHeFfDvwofYU+a8weMDvRcDOJLcAjwI3A1TV/iQ7GfwBOAnc2h5gLEk6R0YK96p6EBibYtf6afpvA7adRV2SpLPgN1QlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHVo1Geoagprtn58QV73kTtuXJDXhcX5O+vc8d/X3PHKXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDo0U7kkeSfLFJA8m2dfarkiyO8nDbXn5UP
kxxKcjDJDfNVvCRpamdy5f79VXVdVY217a3AnqpaC+xp2yS5GtgEXANsAO5MsmQOa5YkzeBspmU2Ajva+g7gpqH2e6vqRFUdBg4B687idSRJZ2jUcC/gj5M8kGRLa1teVccA2nJZa18JHBk6dry1nSLJliT7kuybmJiYXfWSpCmNem+Z11TV0STLgN1JvvwMfTNFW53WULUd2A4wNjZ22n5J0uyNdOVeVUfb8jjwewymWR5LsgKgLY+37uPA6qHDVwFH56pgSdLMZgz3JM9N8vyn1oEfBL4E7AI2t26bgfva+i5gU5JLk1wFrAX2znXhkqTpjTItsxz4vSRP9f9wVf1Rks8AO5PcAjwK3AxQVfuT7AQeAk4Ct1bVk/NSvSRpSjOGe1V9Bbh2ivavA+unOWYbsO2sq5MkzYrfUJWkDhnuktQhw12SOuQzVHVBWKhna0oXKq/cJalDhrskdchwl6QOGe6S1CHDXZI65KdlJJ3GTydd+Lxyl6QOGe6S1CGnZS5A/i+zpJl45S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDo0c7kmWJPlcko+17SuS7E7ycFtePtT39iSHkhxMcsN8FC5Jmt6ZXLnfBhwY2t4K7KmqtcCetk2Sq4FNwDXABuDOJEvmplxJ0ihGCvckq4AbgfcPNW8EdrT1HcBNQ+33VtWJqjoMHALWzU25kqRRjHrl/uvAu4C/H2pbXlXHANpyWWtfCRwZ6jfe2k6RZEuSfUn2TUxMnHHhkqTpzRjuSd4IHK+qB0Y8Z6Zoq9MaqrZX1VhVjS1dunTEU0uSRjHKk5heA/xwkjcAzwZekOQ3gceSrKiqY0lWAMd
3Fg9dDxq4Cjc1m0JOmZzXjlXlW3V9WqqlrD4I3SP6mqHwd2AZtbt83AfW19F7ApyaVJrgLWAnvnvHJJ0rTO5hmqdwA7k9wCPArcDFBV+5PsBB4CTgK3VtWTZ12pJGlkZxTuVfVJ4JNt/evA+mn6bQO2nWVtkqRZ8huqktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktShGcM9ybOT7E3y+ST7k/xca78iye4kD7fl5UPH3J7kUJKDSW6Yz19AknS6Ua7cTwCvq6prgeuADUmuB7YCe6pqLbCnbZPkamATcA2wAbgzyZL5KF6SNLUZw70Gvt02L2k/BWwEdrT2HcBNbX0jcG9Vnaiqw8AhYN2cVi1JekYjzbknWZLkQeA4sLuq7geWV9UxgLZc1rqvBI4MHT7e2iRJ58hI4V5VT1bVdcAqYF2Slz9D90x1itM6JVuS7Euyb2JiYrRqJUkjOaNPy1TVE8AnGcylP5ZkBUBbHm/dxoHVQ4etAo5Oca7tVTVWVWNLly6dRemSpOmM8mmZpUkua+vPAX4A+DKwC9jcum0G7mvru4BNSS5NchWwFtg714VLkqZ38Qh9VgA72ideLgJ2VtXHkvwFsDPJLcCjwM0AVbU/yU7gIeAkcGtVPTk/5UuSpjJjuFfVF4BXTtH+dWD9NMdsA7addXWSpFnxG6qS1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6NGO4J1md5BNJDiTZn+S21n5Fkt1JHm7Ly4eOuT3JoSQHk9wwn7+AJOl0o1y5nwR+tqpeBlwP3JrkamArsKeq1gJ72jZt3ybgGmADcGeSJfNRvCRpajOGe1Udq6rPtvVvAQeAlcBGYEfrtgO4qa1vBO6tqhNVdRg4BKyb68IlSdM7ozn3JGuAVwL3A8ur6hgM/gAAy1q3lcCRocPGW9vkc21Jsi/JvomJiTOvXJI0rZHDPcnzgI8C76iqbz5T1yna6rSGqu1VNVZVY0uXLh21DEnSCEYK9ySXMAj2D1XV77bmx5KsaPtXAMdb+ziweujwVcDRuSlXkjSKUT4tE+Au4EBV/erQrl3A5ra+GbhvqH1TkkuTXAWsBfbOXcmSpJlcPEKf1wBvBr6Y5MHW9m7gDmBnkluAR4GbAapqf5KdwEMMPmlza1U9OeeVS5KmNWO4V9WfMfU8OsD6aY7ZBmw7i7okSWfBb6hKUocMd0nq0Chz7ue9NVs/vtAlSNJ5pYtwl6SzsZAXiI/cceO8nNdpGUnqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOzRjuSe5OcjzJl4barkiyO8nDbXn50L7bkxxKcjDJDfNVuCRpeqNcud8DbJjUthXYU1VrgT1tmyRXA5uAa9oxdyZZMmfVSpJGMmO4V9WngccnNW8EdrT1HcBNQ+33VtWJqjoMHALWzVGtkqQRzXbOfXlVHQNoy2WtfSVwZKjfeGs7TZItSfYl2TcxMTHLMiRJU5nrN1QzRVtN1bGqtlfVWFWNLV26dI7LkKTF
h/liSFQBteby1jwOrh/qtAo7OvjxJ0mzMNtx3AZvb+mbgvqH2TUkuTXIVsBbYe3YlSpLO1MUzdUjyW8BrgSuTjAPvAe4Adia5BXgUuBmgqvYn2Qk8BJwEbq2qJ+epdknSNGYM96p60zS71k/Tfxuw7WyKkiSdHb+hKkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjpkuEtShwx3SeqQ4S5JHTLcJalDhrskdchwl6QOGe6S1CHDXZI6ZLhLUocMd0nqkOEuSR0y3CWpQ4a7JHXIcJekDhnuktQhw12SOmS4S1KHDHdJ6pDhLkkdMtwlqUPzFu5JNiQ5mORQkq3z9TqSpNPNS7gnWQL8V+D1wNXAm5JcPR+vJUk63Xxdua8DDlXVV6rq74B7gY3z9FqSpEkunqfzrgSODG2PA68e7pBkC7ClbX47ycF5quVMXQl8baGLOE84FgOOw4DjMDCn45BfPqvDXzzdjvkK90zRVqdsVG0Hts/T689akn1VN
QdZwPHIsBx2HAcRi4UMZhvqZlxoHVQ9urgKPz9FqSpEnmK9w/A6xNclWSZwGbgF3z9FqSpEnmZVqmqk4m+SngfwJLgLurav98vNY8OO+mihaQYzHgOAw4DgMXxDikqmbuJUm6oPgNVUnqkOEuSR0y3Ics1lsmJLk7yfEkXxpquyLJ7iQPt+XlC1njuZBkdZJPJDmQZH+S21r7ohqLJM9OsjfJ59s4/FxrX1Tj8JQkS5J8LsnH2vYFMQ6Ge7PIb5lwD7BhUttWYE9VrQX2tO3enQR+tqpeBlwP3Nr+DSy2sTgBvK6qrgWuAzYkuZ7FNw5PuQ04MLR9QYyD4f60RXvLhKr6NPD4pOaNwI62vgO46ZwWtQCq6lhVfbatf4vBf9ArWWRjUQPfbpuXtJ9ikY0DQJJVwI3A+4eaL4hxMNyfNtUtE1YuUC3ng+VVdQwGoQcsW+B6zqkka4BXAvezCMeiTUU8CBwHdlfVohwH4NeBdwF/P9R2QYyD4f60GW+ZoMUhyfOAjwLvqKpvLnQ9C6Gqnqyq6xh8u3xdkpcvdE3nWpI3Aser6oGFrmU2DPenecuEUz2WZAVAWx5f4HrOiSSXMAj2D1XV77bmRTkWAFX1BPBJBu/JLLZxeA3ww0keYTBN+7okv8kFMg6G+9O8ZcKpdgGb2/pm4L4FrOWcSBLgLuBAVf3q0K5FNRZJlia5rK0/B/gB4MsssnGoqturalVVrWGQB39SVT/OBTIOfkN1SJI3MJhje+qWCdsWuKRzIslvAa9lcCvTx4D3AL8P7AReBDwK3FxVk9907UqS7wH+FPgiT8+xvpvBvPuiGYskr2DwRuESBheAO6vq55N8B4toHIYleS3wzqp644UyDoa7JHXIaRlJ6pDhLkkdMtwlqUOGuyR1yHCXpA4Z7pLUIcNdkjr0/wH+oAtTxSEAHgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASNklEQVR4nO3df6xfdX3H8efLVgFhCIQLqW2xdeucYDLUO8RhHAYmKM6yZWw1UTtlq
q0JjMVpfgP10w25wzGy6dMMrGqA0/QqOisKrBZUItSoRSGxrLjyu1rTojTlfX+t4f39Pw9fK9tPd+L/fSfp6P5OZ7zud8zvfzuZ+cvL7nfs73nJuqQpLUhufMdgckSTPH0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihryYk2Zrk/NnuhzTb4vf0JakdnulLUkMMfTUhycNJLkzy0SQbklyf5Ilu2me0r97CJLck2ZvkB0n+oSt/TpK/TPJIkj3d/i/oti1KUknekeSxJP+d5N1JfivJt5L86OD79LXzziTburpfTPKimR0RtcrQV4veDKwHTgI2AgeDfQ7wWeARYBEwv6sH8Cfdz+uAFwMnHNyvz6uAJcAfA58APgJcCJwF/FGS3+nauRT4MPAHwAjwVeDGaf4dpYGc01cTkjwM/CnwGuA1VXVhV34mcG9VHZfk1fQ+BOZV1f5x+28Cbq6qq7v1lwAPAMcBC4CdwIKq+m63/QfAn1XVZ7r1m4GvVtUnktwO3FRV13TbngP8BHhpVT3yTI6D5Jm+WvS9vuWfAscmmQssBB4ZH/idF9L7C+CgR4C5wOl9Zbv7ln82YP2EbvlFwN930z4/An4IhN5fFtIzytCXnvQYcEb3ATDe4/TC+qAzgP38crBPpp13VdVJfT/HVdV/TeG9pEkx9KUnbQZ2AVclOT7JsUnO67bdCHwgyeIkJwB/BXxmgr8KDuWfgNVJzgJI8oIkl03HLyAdiqEvdarqAPB7wK8BjwJj9C7KAlwL/CtwF735+/8F3jfFdm4FPgasT/JjetcG3jBU56XD5IVcSWqIZ/qS1BBDX5IaYuhLUkMOGfpJru1uO3+gr+yvk3y7u8X81iQn9W1bnWRHku1JLuorf2WS+7ttn0yS6f91JElP55AXcpO8lt7dgtdX1cu6stcDX6qq/Uk+BlBVH+ru
wROIfezSz/Afx6VR1Ishm4Argb+Dzwyaq6/VAdPPXUU2vRokVT/f0kqUn33nvv96tqZHz5oJtQfklV3ZVk0biyO/pW7wb+sFteCqyvqn3AziQ7gHO6W+BPrKqvASS5HrgUOGToL1q0iC1bthyqmiSpT5KBj/SYjjn9d/JkeM+nd7fhQWNd2fxueXz5QElWJNmSZMvevXunoYuSJBgy9JN8hN6t6DccLBpQrZ6mfKCqWltVo1U1OjLylL9OJElTdMjpnYkkWQ68CbignrwwMEbvoVUHLaD3zJKxbnl8uSRpBk3pTD/JxcCHgDdX1U/7Nm0EliU5Jslies8W31xVu4AnkpzbfWvn7cBtQ/ZdkjRJhzzTT3IjcD5wapIx4EpgNXAMcGf3zcu7q+rdVbU1yQbgQXrTPiu755kAvAe4jt7zx2/nMC7iSpKm17P+2Tujo6Plt3ckaXKS3FtVo+PLvSNXkhpi6EtSQwx9SWrIlL+yqYktWvW5WWv74asumbW2JT37eaYvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMOGfpJrk2yJ8kDfWWnJLkzyUPd68l921Yn2ZFke5KL+spfmeT+btsnk2T6fx1J0tM5nDP964CLx5WtAjZV1RJgU7dOkjOBZcBZ3T5XJ5nT7fMpYAWwpPsZ/56SpGfYIUO/qu4CfjiueCmwrlteB1zaV76+qvZV1U5gB3BOknnAiVX1taoq4Pq+fSRJM2Sqc/qnV9UugO71tK58PvBYX72xrmx+tzy+fKAkK5JsSbJl7969U+yiJGm86b6QO2ievp6mfKCqWltVo1U1OjIyMm2dk6TWTTX0d3dTNnSve7ryMWBhX70FwONd+YIB5ZKkGTTV0N8ILO+WlwO39ZUvS3JMksX0Lthu7qaAnkhybvetnbf37SNJmiFzD1UhyY3A+cCpScaAK4GrgA1JLgceBS4DqKqtSTYADwL7gZVVdaB7q/fQ+ybQccDt3Y8kaQYdMvSr6i0TbLpggvprgDUDyrcAL5tU7yRJ08o7ciWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGHPJ/5OrIsmjV52al3YevumRW2pU0OZ7pS1JDPNPXtJitvzDAvzKkyfBMX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIUOFfpIPJNma5IEkNyY5NskpSe5M8lD3enJf/dVJdiTZnuSi4bsvSZqMKYd+kvnAnwOjVfUyYA6wDFgFbKqqJcCmbp0kZ3
zwIuBq5OMme47kuSJmPY6Z25wHFJ5gLPBx4HlgLruu3rgEu75aXA+qraV1U7gR3AOUO2L0mahCnfnFVV303yN8CjwM+AO6rqjiSnV9Wurs6uJKd1u8wH7u57i7Gu7CmSrABWAJxxxhlT7eKs3jAkSc9Gw0zvnEzv7H0x8ELg+CRvfbpdBpTVoIpVtbaqRqtqdGRkZKpdlCSNM8z0zoXAzqraW1X/B9wC/DawO8k8gO51T1d/DFjYt/8CetNBkqQZMkzoPwqcm+T5SQJcAGwDNgLLuzrLgdu65Y3AsiTHJFkMLAE2D9G+JGmShpnTvyfJTcA3gP3AN4G1wAnAhiSX0/tguKyrvzXJBuDBrv7KqjowZP8lSZMw1FM2q+pK4MpxxfvonfUPqr8GWDNMm5KkqfOOXElqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIUOFfpKTktyU5NtJtiV5dZJTktyZ5KHu9eS++quT7EiyPclFw3dfkjQZw57p/z3whar6DeA3gW3AKmBTVS0BNnXrJDkTWAacBVwMXJ1kzpDtS5ImYcqhn+RE4LXANQBV9fOq+hGwFFjXVVsHXNotLwXWV9W+qtoJ7ADOmWr7kqTJG+ZM/8XAXuBfknwzyaeTHA+cXlW7ALrX07r684HH+vYf68qeIsmKJFuSbNm7d+8QXZQk9Rsm9OcCrwA+VVUvB/6HbipnAhlQVoMqVtXaqhqtqtGRkZEhuihJ6jdM6I8BY1V1T7d+E70Pgd1J5gF0r3v66i/s238B8PgQ7UuSJmnKoV9V3wMeS/KSrugC4EFgI7C8K1sO3NYtbwSWJTkmyWJgCbB5qu1LkiZv7pD7vw+4IcnzgO8A76D3QbIhyeXAo8BlAFW1NckGeh8M+4GVVXVgyPYlSZMwVOhX1X3A6IBNF0xQfw2wZpg2JUlT5x25ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDhg79JHOSfDPJZ7v1U5LcmeSh7vXkvrqrk+xIsj3JRcO2LUmanOk4078C2Na3vgrYVFVLgE3dOknOBJYBZwEXA1cnmTMN7UuSDtNQoZ9kAXAJ8Om+4qXAum55HXBpX/n6qtpXVTuBHcA5w7QvSZqcYc/0PwH8BfCLvrLTq2oXQPd6Wlc+H3isr95YV/YUSVYk2ZJky969e4fsoiTpoCmHfpI3AXuq6t7D3WVAWQ2qWFVrq2q0qkZHRkam2kVJ0jhzh9j3PODNSd4IHAucmOTfgN1J5lXVriTzgD1d/TFgYd/+C4DHh2hfkjRJUz7Tr6rVVbWgqhbRu0D7pap6K7ARWN5VWw7c1i1vBJYlOSbJYmAJsHnKPZckTdowZ/oTuQrYkORy4FHgMoCq2ppkA/AgsB9YWVUHnoH2JUkTmJbQr6qvAF/pln8AXDBBvTXAmuloU5I0ed6RK0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhz8Szd6QZtWjV52al3YevumRW2pWG4Zm+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0JakhUw79JAuTfDnJtiRbk1zRlZ+S5M4kD3WvJ/ftszrJjiTbk1w0Hb+AJOnwDXOmvx/4YFW9FDgXWJnkTGAVsKmqlgCbunW6bcuAs4CLgauTzBmm85KkyZly6FfVrqr6Rrf8BLANmA8sBdZ11dYBl3bLS4H1VbWvqnYCO4Bzptq+JGnypuV/5CZZBLwcuAc4vap2Qe+DIclpXbX5wN19u411ZYPebwWwAuCMM86Yji5K0262/jcv+P95NXVDX8hNcgJwM/D+qvrx01UdUFaDKlbV2qoararRkZGRYbsoSeoMFfpJnksv8G+oqlu64t1J5nXb5wF7uvIxYGHf7guAx4dpX5I0OcN8eyfANcC2qvp436aNwPJueTlwW1/5siTHJFkMLAE2T7V9SdLkDTOnfx7wNuD+JPd1ZR8GrgI2JLkceBS4DKCqtibZADxI75s/K6vqwBDtS5ImacqhX1X/yeB5eoALJthnDbBmqm1K6pmti8heQD7yeUeuJDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ6bl3yVKaoNP9zzyeaYvSQ0x9CWpIYa+JDXE0JekhnghV9Kz3mxdQIaj7yKyZ/qS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhsx46Ce5OMn2JDuSrJrp9iWpZTN6R26SOcA/Ar8LjAFfT7Kxqh6cyX5I0uE62h4nPdNn+ucAO6rqO1X1c2A9sHSG+yBJzZrpZ+/MBx7rWx8DXjW+UpIVwIpu9SdJtvdtPhX4/jPWwyOX4zIxx2Ywx2WwZ8W45GNDv8WLBhXOdOhnQFk9paBqLbB24BskW6pqdLo7dqRzXCbm2AzmuAx2tI/LTE/vjAEL+9YXAI/PcB8kqVkzHfpfB5YkWZzkecAyYOMM90GSmjWj0ztVtT/Je4EvAnOAa6tq6yTfZuC0jxyXp+HYDOa4DHZUj0uqnjKlLkk6SnlHriQ1xNCXpIYcMaHv4xt+WZKHk9yf5L4kW7qyU5LcmeSh7vXk2e7nMy3JtUn2JHmgr2zCcUiyujuGtie5aHZ6PTMmGJuPJvlud9zcl+SNfduaGJskC5N8Ocm2JFuTXNGVN3HcHBGh3/f4hjcAZwJvSXLm7PbqWeF1VXV233eKVwGbqmoJsKlbP9pdB1w8rmzgOHTHzDLgrG6fq7tj62h1HU8dG4C/646bs6vq89Dc2OwHPlhVLwXOBVZ2v38Tx80REfr4+IbDtRRY1y2vAy6dxb7MiKq6C/jhuOKJxmEpsL6q9lXVTmAHvWPrqDTB2EykmbGpql1V9Y1u+QlgG72nBTRx3BwpoT/o8Q3zZ6kvzxYF3JHk3u6xFQCnV9Uu6B3YwGmz1rvZNdE4eBz1vDfJt7rpn4NTGE2OTZJFwMuBe2jkuDlSQv+wHt/QmPOq6hX0prxWJnntbHfoCOBxBJ8CfhU4G9gF/G1X3tzYJDkBuBl4f1X9+OmqDig7YsfmSAl9H98wTlU93r3uAW6l9+fm7iTzALrXPbPXw1k10Tg0fxxV1e6qOlBVvwD+mSenKZoamyTPpRf4N1TVLV1xE8fNkRL6Pr6hT5Ljk/zKwWXg9cAD9MZkeVdtOXDb7PRw1k00DhuBZUmOSbIYWAJsnoX+zZqDodb5fXrHDTQ0NkkCXANsq6qP921q4riZ6adsTsk0Pb7haHI6cGvv2GUu8O9V9YUkXwc2JLkceBS4bBb7OCOS3AicD5yaZAy4EriKAeNQVVuTbAAepPcNjpVVdWBWOj4DJhib85OcTW964mHgXdDc2JwHvA24P8l9XdmHaeS48TEMktSQI2V6R5I0DQx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1JD/B8W6NhofBuu3AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here