Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Final Exam Problems (Please extend sufficient space if you work on the docx version) [10 points] 1. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function: [20...

1 answer below »
Final Exam Problems
(Please extend sufficient space if you work on the docx version)
[10 points]
1. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function:
[20 points]
2. Let , where is the function whose graph is shown below.
a) Evaluate , , , , and
) On what intervals is increasing?
c) Where does have a maximum value?
d) Sketch a graph of the function
[25 points]
3. Use Part 2 of the Fundamental Theorem of Calculus to evaluate the definite integral.
a)
)
c)
d)
e)
[10 points]
4. Find the indefinite integral:
a)
)
[10 points]
5. Find the area of the region bounded by the curves: and
[10 points]
6. Find the average value of the function on the interval
[9 points]
7. A tennis ball is thrown vertically downward from a height of 54 feet with an initial velocity of 8 feet/sec.
a) What is the velocity of the ball at time ?
) What is the position of the ball at time ?
c) What is the impact velocity if it hits a 6-foot tall person on the head?
[6 points]
8. The fuel tank on a large truck has trapezoidal cross sections with dimensions (in feet) shown in the figure below. Assume that the engine is approximately 2 feet above the top of the fuel tank and that diesel fuel weighs approximately 55.6 pounds per cubic foot.
Find the work done by the fuel pump in raising a full tank of fuel to the level of the engine.
    Hint: Use the fact that
Answered Same Day Mar 02, 2023

Solution

Aparna answered on Mar 03 2023
49 Votes
Final Exam Problems
(Please extend sufficient space if you work on the docx version)
[10 points]
1. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function:
Solution 1:
We need to find
According to fundamental theorem of calculus: If then Therefore,
[20 points]
1. Let , where is the function whose graph is shown below.
a) Evaluate , , , , and
) On what intervals is increasing?
c) Where does have a maximum value?
d) Sketch a graph of the function
Solution:
a. Let therefore provides the area underneath the curve from the origin.
i.
ii. {Area of rectangle}
iii. {Area of rectangle and area of triangle}
iv. {Area of triangle}
v. {Area of trapezium...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here