• •Multi-1)0F Sysit/Page 18 Example: Compare the Stiffness and Flexibility Matricies formed by using the unit-displacement and unit-load techniques for the following system. First, find Stiffness Matrix using unit-displacement technique:'"1 IZ x3(0) (I XXXXXXXXXXt) 'I x :1;1 FF;2 k, *31= k „(a)01 ! XXXXXXXXXX)T 12 X XXXXXXXXXXPl * 1 2 FtrF P3 *32k22 (b)(I XXXXXXXXXX) "' '3 s3 I:I 14 17 Pa *13 P2 *23 FNitrFlc)P3 - 433From (a), (unit displacement of ml)kl 1k21= F1 + F XXXXXXXXXX= - • k31= 0 1' 2 31From (b) (unit displacement of m2)k12k221 1 -F • k = - F-1 ' 2 " 13Fl +12F 13• • From (c) (unit displacement of m3)Then the Stiffness Matrix is:[k] =F F XXXXXXXXXX-F0(F12k13 = 0 ; k23Multi-DOF SysilisiPage 19 = —F1 13k33 = Fl + F 1 — 13 140F-F XXXXXXXXXX-F13F
• • The Flexibility Matrix found by applying unit loads at each station:x = a l' SO a= (Do force balance to find each ad (Let = I, + + 1, + 1,)[a] -.«.0s,11111.9.„' XXXXXXXXXX.° XXXXXXXXXXmfLoading at Station 3 is similar to Station I1, XXXXXXXXXX, XXXXXXXXXX, XXXXXXXXXX, 12)(13 ' XXXXXXXXXX XXXXXXXXXX11 + 12 " 13)• Now, Prove [ay' = [k]•First, find [ adj a (Using MATLAB, MATHCAD or DERIVE): Then find del a : Divide [ adj a] by der a to find [a]': Which is the same expression as [k] ?¦¦•• 1.4¦2.0CF 21
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here