Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Name: Name: University ID: Thomas Edison State University Calculus II (MAT-232) Section no.: Semester and year: Written Assignment 2 Answer all assigned exercises, and show all work. Each exercise is...

1 answer below »
Name:
Name:
University ID:
Thomas Edison State University
Calculus II (MAT-232)
Section no.:
Semester and year:
Written Assignment 2
Answer all assigned exercises, and show all work. Each exercise is worth 4 points.
Section 6.2
4. Evaluate the integral.
6. Evaluate the integral.
    
18. Evaluate the integral.
    
22. Evaluate the integral.
    

24. Evaluate the integral.
    
46. Evaluate the integral using integration by parts and substitution.

    
Section 6.3
8. Evaluate the integral.
    
    
10. Evaluate the integral.
    
    
18. Evaluate the integral.
    
    
28. Evaluate the integral.
    
    
30. Evaluate the integral.
    
    
Section 6.4
2. Find the partial fractions decomposition and an antiderivative.
12. Find the partial fractions decomposition and an antiderivative.
    
16. Find the partial fractions decomposition and an antiderivative.
    
22. Evaluate the integral.
    
24. Evaluate the integral.
    
Section 6.6
8. Determine whether the integral converges or diverges. Find the value of the integral if it converges.
(a)             (b)
10. Determine whether the integral converges or diverges. Find the value of the integral if it converges.
(a)             (b)
    
16(a). Determine whether the integral converges or diverges. Find the value of the integral if it converges.

Section 3.2
2. Find the indicated limit.
12. Find the indicated limit.
    
14. Find the indicated limit.
    
22. Find the indicated limit.

30. Find the indicated limit.
    
38. Find the indicated limit.
    
    WA 2, p. 2
2
sin
xxdx
ò
1
23
0
x
xedx
ò
2
1
ln
xxdx
ò
2
ln(4)
xxdx
+
ò
4
sin(3)
xdx
-
ò
4
cotcsc
xxdx
ò
22
(cossin)
xxdx
+
ò
32
1
xxdx
-
ò
2
4
x
dx
x
-
ò
2
52
4
x
x
-
-
3
1
4
xx
+
2
2
69
x
xx
-+
2
2
1
56
x
dx
xx
+
--
ò
3
1
1
dx
x
-
ò
1
23
x
xedx
-Â¥
ò
0
4
x
xedx
-
-Â¥
ò
0
cos
xdx
Â¥
ò
sin
0
cos
x
xedx
Â¥
-
ò
2
2
0
1
x
dx
x
-
ò
2
2
2
4
lim
32
x
x
xx
®
-
-+
3
0
tan
lim
x
xx
x
®
-
1
ln
lim
1
t
t
t
®
-
ln
lim
x
x
x
®¥
0
lim
ln
x
x
x
®+
1
0
lim(cos)
x
x
x
®+
ln
xxdx
ò
ln
x
dx
x
ò
Answered 5 days After Jun 17, 2021

Solution

Joice G answered on Jun 22 2021
143 Votes
CamScanner 06-22-2021 17.23.13
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here