Name:
Name:
University ID:
Thomas Edison State University
Calculus II (MAT-232)
Section no.:
Semester and year:
Written Assignment 2
Answer all assigned exercises, and show all work. Each exercise is worth 4 points.
Section 6.2
4. Evaluate the integral.
6. Evaluate the integral.
18. Evaluate the integral.
22. Evaluate the integral.
24. Evaluate the integral.
46. Evaluate the integral using integration by parts and substitution.
Section 6.3
8. Evaluate the integral.
10. Evaluate the integral.
18. Evaluate the integral.
28. Evaluate the integral.
30. Evaluate the integral.
Section 6.4
2. Find the partial fractions decomposition and an antiderivative.
12. Find the partial fractions decomposition and an antiderivative.
16. Find the partial fractions decomposition and an antiderivative.
22. Evaluate the integral.
24. Evaluate the integral.
Section 6.6
8. Determine whether the integral converges or diverges. Find the value of the integral if it converges.
(a) (b)
10. Determine whether the integral converges or diverges. Find the value of the integral if it converges.
(a) (b)
16(a). Determine whether the integral converges or diverges. Find the value of the integral if it converges.
Section 3.2
2. Find the indicated limit.
12. Find the indicated limit.
14. Find the indicated limit.
22. Find the indicated limit.
30. Find the indicated limit.
38. Find the indicated limit.
WA 2, p. 2
2
sin
xxdx
ò
1
23
0
x
xedx
ò
2
1
ln
xxdx
ò
2
ln(4)
xxdx
+
ò
4
sin(3)
xdx
-
ò
4
cotcsc
xxdx
ò
22
(cossin)
xxdx
+
ò
32
1
xxdx
-
ò
2
4
x
dx
x
-
ò
2
52
4
x
x
-
-
3
1
4
xx
+
2
2
69
x
xx
-+
2
2
1
56
x
dx
xx
+
--
ò
3
1
1
dx
x
-
ò
1
23
x
xedx
-Â¥
ò
0
4
x
xedx
-
-Â¥
ò
0
cos
xdx
Â¥
ò
sin
0
cos
x
xedx
Â¥
-
ò
2
2
0
1
x
dx
x
-
ò
2
2
2
4
lim
32
x
x
xx
®
-
-+
3
0
tan
lim
x
xx
x
®
-
1
ln
lim
1
t
t
t
®
-
ln
lim
x
x
x
®¥
0
lim
ln
x
x
x
®+
1
0
lim(cos)
x
x
x
®+
ln
xxdx
ò
ln
x
dx
x
ò