Solution
Vicky answered on
Nov 12 2021
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## CSC 475 / SENG 480B - Assignment 4"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pickle\n",
"import numpy as np\n",
"import li
osa\n",
"import sklearn\n",
"import matplotlib.pyplot as plt\n",
"from scipy import signal\n",
"import IPython.display as ipd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Question 1\n",
"\n",
"This question will build on the audio feature extraction using spectral centroid question from assignment 3. We'll perform experiments on three different genres: classical, disco, and reggae. There are 300 audio files in total, 100 for each genre. These audio files are available in the GTZAN folder in assignment resources. Here is a solution to the last question from assignment 3 (updated with new genres), which computes the mean and standard deviation of the spectral centroid for each track and plots on a scatter plot. We'll use these results for audio classification."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def compute_folder(folder):\n",
" \"\"\"\n",
" Compute the spectral centroid calculations for a folder of audio files\n",
" \n",
" Notice that I'm also keeping track of the associated file names - don't really\n",
" need it for this function - but will come in handy for the last part of question 1 :) \n",
" \"\"\"\n",
" \n",
" results = []\n",
" files = []\n",
" for filename in os.listdir(folder):\n",
" \n",
" # Load audio file\n",
" path = os.path.join(folder, filename)\n",
" audio, sr = li
osa.load(path)\n",
" files.append(files)\n",
" \n",
" # Compute frame-by-frame spectral centroid\n",
" sc = li
osa.feature.spectral_centroid(audio)\n",
" \n",
" # Compute mean and standard deviation across frames\n",
" results.append((sc.mean(), sc.std()))\n",
" \n",
" return np.a
ay(results), files"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"classical, _ = compute_folder('./a4_resources/GTZAN/classical')\n",
"disco, _ = compute_folder('./a4_resources/GTZAN/disco')\n",
"reggae, _ = compute_folder('./a4_resources/GTZAN
eggae')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAz0AAAIhCAYAAABkC9QhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABcSAAAXEgFnn9JSAADh7klEQVR4nOzdeXwU9f348dcn2ZCEJJwBgopy2wZFkASNUBUFbyRAtLVYigcIpT88W9NaBautpNbWo1+xaK1aaauFAF6oWLQiBkgQQYlKADlUrhCOJGRDjs/vj9kNm2R3MzM7m2yS97OPPLaZnc/M5JJ5z+f9eb+V1hohhBBCCCGEaKuiWvoChBBCCCGEECKcJOgRQgghhBBCtGkS9AghhBBCCCHaNAl6hBBCCCGEEG2aBD1CCCGEEEKINk2CHiGEEEIIIUSbJkGPEEIIIYQQok2ToEcIIYQQQgjRpknQI4QQQgghhGjTJOgRQgghhBBCtGkS9AghhBBCCCHaNAl6hBBCCCGEEG2aq6UvQNijlNoHdAT2tPS1CCGEEEII4ZA+wHGtdYqTB1VaayePJ5qJUupYbGxs0oABA1r6UoQQQgghhHDE9u3bqaysLNVad3LyuDLT03rtGTBgQOqWLVta+jqEEEIIIYRwxJAhQygsLHQ8k0nW9AghhBBCCCHaNAl6hBBCCCGEEG2aBD1CCCGEEEKINk2CHiGEEEIIIUSbJkGPEEIIIYQQok2ToEcIIYQQQgjRpknQI4QQQgghhGjTpE9PO6S1RprSiuaglEIp1dKXIYQQQoh2ToKedkBrTWlpKceOHeP48ePU1NS09CWJdqRDhw4kJSXRvXt3oqOjW/pyhBBCCNEOSdDTxtXW1rJv3z6OHj3a0pci2qkTJ05w6NAhysvLOf300yXwEUIIIUSza7VBj1JqBDAOGOn5OBVAa+03l0YpZSaf632t9SU+Yy4G3g+y/zqt9fkBznca8BBwOdAN2A38C3hEa+02cS2OOHr0aF3A061bN5KSkoiNjZWUI9EsamtrKS8vZ
+
jdbg4dOkTPnj1b+rKEEEII0c602qAHuB+YYGH/F4O8dzWQDKwO8P524KMA2xtRSg0E8jzH/Nxz3DTgAeBSpdSlWutKk9cdksOHDwPQs2dPunfv3hynFKJOVFQUnTt3BuC7776jtLRUgh4hhBBCNLvWHPTkAZuBfM/HTiA20M5a62n+tiulugA/8nz6coDhHwUaH8ALGAHPk1
2z3ncQGvAhOBXwHzLBzPFq01lZVGbNWpU6dwn06IgBISEgAj1U1rLTONQgghRAQqrigmtyiXgn0FlFeXk+BKID0lnYmDJpIcn9zSlxeSVhv0aK1zfD8P4SbqOoxgaa3WuijU61JKjQRGAQeAX3q3a62rlVKzgGuAOUqph7XW1aGeLxjfCm2yjkK0pKiok9XxJegRQgghIou72s389fNZvn051bX1b0/z9ubx9KanyRyYSfbIbGKjA84xRDTp0wM3el7/4dDxrva8vt4whU1rvR8j1a0rMNqh8wkhhBBCCGGLu9rNrPdmsaRoSaOAx6u6tprFWxczc+VM3NXNtjTdUe066FFKnQ78AKgCXgmy6yCl1CNKqYVKqd8rpa5SSgX63p3jef0kwPve7UOtX7EQQgghhBDOmb9+PgX7C0ztW7C/gJz8nKZ3jECtNr3NIVMABazQWh8Kst8Fng9fnymlJvtJiTvd8/pNgGN5t59h5gKVUlsCvDXAzHghhBBCCCH8Ka4oZvn25ZbGLNu2jNnDZre6NT7teqaHplPbjgKPAucD3T0flwJrgbOBd5VSnRuMSfS8Hg9wzHLPa5KdCxZCCCGEEMIJuUW5AVPaAqmurWZp0dIwXVH4tNugRyl1LpAKHAFe97eP1nqj1vqXWut1WusSz8cqjPU4q4G+wM/CeZ1a6yH+PghQLls4a968eSileOGFF1r6UvzauXMnSikuvvjiZj+3Uoq+ffs2+3mFEEII4YyCfebS2hrK35fv8JWEX7sNejg5y/Mfqz1ztNY1gDeh8fIGb5d5XjsGGJ7geS21ck4hhBBCCCGcVF5d3vRODo5rSe1yTY9SKpqme/M0xbuWp3eD7buB4cBpAcZ5t++yed6IdrC0klfyd7Pu6xLKKqtJjHVxfv/uXJ/Whx5J
PEYSQ79dRT+eKLL+jYMVCMLYQQQgjhX4IroemdHBzXktpl0IOxLqc3RuCx2uYxunpeG4a6m4AJwLkBxnm3b7Z53ojkrqrhwde3sHjDN1TV6HrvrS4q5vH3tpI1og9zx6cSFyM9g5wSExPD9773vZa+DCGEEEK0QmkpaeTtzbM8Lj0lPQxXE17tNb3Nm9r2svbt4GnNZM9rw9LUb3pexyul6k1tKKV6YZTIPgyssXneiOOuquGnz6/nX+v3NAp4vKpqNP9av5ufPr8ed1VNM1+hf3v27GHOnDkMHjyY+Ph4unXrRlpaGg8++CDHjh0LOn
tm3MmzePjIwMUlJS6NChA6eddhpTp05l69atfsfs2rWLWbNmMXjwYDp27Ei3bt0YMmQIt912G1999VW9fT
HNuvPFG+vfvT1xcHD169GDYsGHccccd7N27t26/ptb0rFu3jh/96EeceuqpxMbG0rt3by699FKeffbZevt9+umn/PKXv2TEiBH06NGD2NhY+vfvz89+9jO+++47E99NIYQQQrQ2kwZNwhVlbQ7EFeVi4qCJYbqi8Gl3QY9SqiPg/UkFbUiqlLpDKdWnwTallLoNuBPQwALf97XW6zECmp6cXPeDUsoFPA3EAE9qratC/FIixoOvb2Hd1yWm9l33dQkPvl4Y5itq2urVqxk6dChPPfUUVVVVjB8/nlGjRnH06FHmzZvHjh07go5/7rnn+O1vf0t5eTnp6elce+21dOrUiX/84x+kp6ezeXP9ibw9e/Zw7rnn8swzzwBw1VVXcdFFFxEbG8uzzz5LXt7JpywbNmwgPT2dRYsWkZSUxIQJEzj
POpqqriiSeeaBQgBfLEE09wwQUX8Mo
9C7d28mTZrEWWedxeeff84vfvGLevvOnz+fP
5zwCMHj2aq666Cq01CxYsIC0tTQIfIYQQog1Kjk9mwoAJlsZkDsxsdeWqoRWntymlrgbu99nUwbN9rc+2h7TWb1JfJkZZ6XytdVN3j3cAf1RKfQJ8DcRhlKruB9QCc7TWG/yMuwnIA25XSl0CFALpQH/gY+CRpr6+1uJAqZvFGwK1JPJv8YY93DVucIut8SkpKWHy5MkcOXKERx99lLvuuouoqJPxf15eHqecckrQY2RmZnL
fRr1+/etv
ve/c/PNN3PHHXewatWquu3PPfccJSUl/PznP+epp56qN2b37t1UVZ2MgZ988kncbjd
OMfufvuu+vt++WXX9K5c8Mq6Y19+OGH3HnnnSQmJrJ06VIuvfTSuveqq6t599136+1/22238cQTT9CrV6+6
W1tTz88MPMnTuX3/zmNzz
PNNnlcIIYQQrUv2yGx2HdtlqkFpWq80skdmN8NVOa81z/T0AM7z+VCe7b7bevgZV5faZuIcjwErgGTgauAKjO/Zy8D5Wuu/+BvkaVg6HHjBcw0TMYKkh4BLrVaLi2Sv5gdOaQukqkbzasGeMF1R05577jkOHjzIFVdcwT333FMv4AHIyMigZ8+eQY9x/vnnNwp4AG666SZGjRrFBx98wNGjR+u2Hzx4EICxY8c2GnP66aczYMAAU/t+73vfo3fvhrUzGps/fz5aa+677756AQ+Ay+XiqquuqrdtzJgx9QIegKioKB544AFOPfVUXnvttSbPKYQQQojWJ84Vx4KxC8ganBUw1c0V5SJrcBbPjHuG2OjWWZiq1c70aK1fwAgqrI67qum96vZ9CniqyR39j92DMePTpplNa2to7Y5DzB4z0OGrMee9994DjNmNUJSVlfH666/z6aefUlJSUjdbs3fvXrTWbN++nXPPNepWjBgxAoBf
XREdHM3bsWOLi4vwed8SIEaxYsYLZs2fz8MMPM3r0aFwu83+q1dXVfPDBBwDMmDHD9LhDhw7x2muv8fnnn3PkyBFqaoy1V1VVVRw6dIiSkhK6detm+nhCCCGEaB3iXHHMzZjL7GGzWVq0lPx9+ZRXl5PgSiA9JZ2Jgya2ypQ2X6026BGRoazSWhffUMc5Yc8eY5bJd3bFqlWrVvGjH/2oblbGn9LSk62Ypk2bxrvvvsu
77K+PHjiYuLIz09nSuuuIK
76ZlJSUun1/8Ytf8NFHH/HBBx8wZswYEhMTycjI4Oq
2batGlNprcdOnSIiooKunXrRteuXYPu6/Wvf/2LGTNmUFZWFnCf0tJSCXqEEEKINiw5PpnpQ6czfej0lr4Ux7Xm9DYRARJj7cXNdsdFgrKyMq6
nqKi4t54IEHKCwspLy8nNraWrTW3HDDDQD4FgaMjo7mlVde4ZNPPmHu3Lmkp6ezbt067rvvPgYPHszHH39ct2+nTp1YtWoVq1ev5pe
CWpqamsWrWKO+64gzPPPJOioqJG1xSKXbt2MW3aNE6cOMHjjz9OUVERx48fR2uN1pqMjIxGX48QQgghRGsiQY8IyXn97D35P79/d4evxLw+fYyCfNu3b7c1fvXq1Rw6dIjJkyfz4IMP8v3vf5+OHTuilLGsLFjlt+HDhzNv3jw+/PBDDh48yJ133klpaSl33HFHvf2UUowePZqcnBzWrVvHd999xw033MD+/fu57777gl5fcnIy8fHxlJSUcOTIkSa/nrfeeosTJ04wZ84c
9dgYOHEh8fHzd+01VshNCCCGEiHQS9IiQXJ/eh5ho1fSOPmKiFden9Wl6xzDxFghYuHChrfGHDx8G4LTTTmv03rZt2/jkk4atm/zr1KkTjzzyCEopPv/886D79uzZk3nz5gE0uW90dHRd3x4zX2Owr+fDDz9k
79TR5DCCGEECKSSdAjQtIzKY6sEY1vloPJGtGnxcpVA9x6660kJyezYsUKHn/88UZpW2vXruXAgQMBxw8ePBiA3Nzcemt6jhw5wi233FKv/LTXP/7xD7/ByooVK9Ba180+ATzzzDN8/fXXjfZ96623AOrtG8i9996LUorf/e53vP/++/Xeq66urjuW79fz8ssvU15eXrf922+/ZebMmU2eSwghhBAi0rXehRUiYswdP4QdB8tNVXI7r1835o5PbYarCqxbt2785z
4dp
+XOO+/kySefJD09nYqKCr744gu2bdvGxo0bA5atTktLY9y4caxcuZLBgwfXzap88MEHJCcnM2HCBJYvX15vzJIlS5g6dSoDBgzg7LPPJj4+nq+
pp169YRFRXFww8/XLfvM888w6xZs0hNTeX73/8+LpeLL7/8kk2bNhEXF8cDDzzQ5Nd40UUX8Yc
IFf/vKXXHLJJaSlpTFo0CCKi4vZtGkTlZWVdalv1157LUOGDKGgoICBAwcyatQo3G4377
PsOGDeOCCy6ot+ZICCGEEKK1kZkeEbK4mGhevHkkN4w8PWCqW0y04oaRp/PizSOJi4lu5its7OKLL2bTpk3MnDkTrTXLli1jzZo1dO7cmd/+9rdNVnZbvnw59913Hz169GDFihVs2LCBH/3oR6xdu5YuXbo02v+uu+5i9uzZJCUlsXr1apYuXcqBAwf44Q9/yLp167juuuvq9n3ooYe4+eabUUrx3
+l9dff52KigpuvfVWPv30U0aNGmXqa7znnnv43
+x8SJE9m9ezeLFy/m888/5+yzz+axxx6r269Dhw6sXr2aWbNmERcXxxtvvMEXX3zB
t
4+VK1cSExNj7psqhBBCCBGhlFRkap2UUltSU1NTt2zZEnCf2tpavvrqKwDOPPPMRk04w+FgaSWvFuxh7Y5DlFVWkxjr4vz+3bk+rWVT2kTLaonfRSGEEEK0PkOGDKGwsLBQaz3EyeNKeptwVI+kWGaPGdhijUeFEEIIIYRoSB63CiGEEEIIIdo0CXqEEEIIIYQQbZoEPUIIIYQQQog2TYIeIYQQQgghRJsmQY8QQgghhBCiTZOgRwghhBBCCNGmSdAjhBBCCCGEaNMk6BFCCCGEEEK0aRL0CCGEEEIIIdo0CXqEEEIIIYQQbZoEPUIIIYQQQog2TYIeIYQQQgghRJsmQY8QDcybNw+lFC+88ELdtosvvhilFDt37myx6xJCCCGEEPZI0COEEEIIIYRo01wtfQFCtAYvvfQSx48f59RTT23pSxFCCCGEEBZJ0COcVXYAPnkRdq6BE2XQIRH6joZzp0Jiz5a+OttOP/30lr4EIYQQQghhk6S3CWdUVcBrc+BPqbDqYdjxPnyTb7yuesjY/vrtUOVu6Sut89p
5GRkUHHjh3p3r07kydPZuvWrX73DbSmZ9euXcyaNYvBgwfTsWNHunXrxpAhQ7jtttv46quvGh1nz549zJkzh8GDBxMfH0+3bt1IS0vjwQcf5NixY/X2PX78OA899BBnnXUW8fHxdO7cmQsvvJB
vfjn0PhBBCCBG5iiuKWbh5ITPencGUt6Yw490ZPLv5WYorilv60lodmekRoauqgJezYNdHgfeprYINL0DxNrhxMcTEN9vl+fPMM88wa9YslFL84Ac/oHfv3qxdu5aRI0cyfvx4U8fYs2cP5557LiUlJQwaNIi
qKmpoadu3axbPPPktGRgZnnnlm3f6rV6/m2muv5ciRI/Tt25fx48dTUVHBl19+ybx585gwYQLDhg0DoLS0lDFjxrBhwwZ69OjBNddcQ3l5OatWrWL16tXk5eXxxBNPhONbI4QQQogW5q52M3/9fJZvX051bXW99/L25vH0pqfJHJhJ9shsYqNjW+gqWxcJekToVtwbPODxtesjeDsbxrfcDfuuXbu48847iYmJ4fXXX+fyyy8HoKqqiptuuomXX37Z1HGee+45SkpK+PnPf85TTz1V773du3dTVVVV93lJSQmTJ0/myJEjPProo9x1111ERZ2caM3Ly+OUU06p+/zXv/41GzZsYMyYMSxfvpykpCQAvvzySy666CKefPJJxo0bxzXXXGP7+yCEEEKIyOOudjPrvVkU7C8IuE91bTWLty5m59GdLBi7gDhXXDNeYesk6W0iNKX74dN/WhuzcZGx9qeFPP/887jdbm644Ya6gAcgJiaGJ554go4dO5o6zsGDBwEYO3Zso/dOP/10BgwYUPf5c889x8GDB7niiiu455576gU8ABkZGfTsaax5Ki8v529/+xtRUVE8/fTTdQEPwPe+9z1+85vfAMhMjxBCCNEGzV8/P2jA46tgfwE5+TlhvqK2QYIeEZqNLxmpa1bUVsEnL4XnekxYvXo1AD/60Y8avde9e3cuu+wyU8cZMWIEYMzKvPHGG7jdgdcrvffeewDcdtttTR53w4YNVFRUcO655/K9732v0fs/+clPAFizZg21tbWmrlUIIYQQka+4opjl25dbGrNs2zJZ42OCBD0iNDvX2BxnMh0uDL777jsAzjjjDL/v9+3b19Rxpk2bxvXXX09hYSHjx4+na9euXHjhhfz+979n37599fbds2cPQL3Zn6auL9B1dOnShc6dO1NRUcHhw4dNXasQQgghIl9uUW6jNTxNqa6tZmnR0jBdUdshQY8IzYmy5h0XQaKjo3nllVf45JNPmDt3Lunp6axbt4777ruPwYMH8/HHH4ft3EqpsB1bCCGEEC2jYJ+5tLaG8vflO3wlbY8EPSI0HRKbd5wDevfuDRgFDfwJtD2Q4cOHM2/ePD788EMOHjzInXfeSWlpKXfccUfdPn369AFg+
tTR7PW9Ag0HUcPXqUI0eOEB8fT9euXS1dqxBCCCEiV3l1ebOOa08k6BGh6TvK5rjRzl6HBT/4wQ8AePXVVxu9V1JSwrvvvmv72J06deKRRx5BKcXnn39et91b7GDhwoVNHmPEiBHEx8ezYcMGioqKGr3vrS43atSoRgURhBBCCNF6JbgSmnVceyJ3TCI0w6dCVIy1MVExcO7U8FyPCTfddBOxsbEsWrSorsAAGCWr77zzTsrLzT0t+cc
lEvsPFasWIFWuu62R2AW2+9leTkZFasWMHjjz+O1
emLVr13LggFHRLiEhgZtvvpna2lpmz55d73q2bt3Kww8/DMCcOXPMf9FCCCGEiHhpKWm2xqWnpDt8JW2PBD0iNEm9YNiPrY0ZPgUSe4bnekzo168fjz32GFVVVVx++eWMGTOGG264gcGDB7N8+XKmTJli6jhLlizh7LPPZuDAgUycOJEf
jHZGRkMGnSJKKiouqCE4Bu3
xn
8h6SkJO68804GDBjAD3/4Q6699loGDRpERkZGXQEDgEceeYQRI0awcuVK+vfvz/XXX8/VV1/NOeecw759+5gzZ47pJqpCCCGEaB0mDZqEK8paG01XlIuJgyaG6YraDgl6ROiuzIEzTKarnTEarmj5evKzZ89m6dKldcUH3nnnHc455xzWrl3LwIEDTR3j
vuYvbs2SQlJbF69WqWLl3KgQMH+OEPf8i6deu47
6u1/8cUXs2nTJmbOnInWmmXLlrFmzRo6d+7Mb3/723qV3ZKSkvjf
7Hgw8+SHJyMq+99hqrV68mLS2Nf/7zn9KjRwghhGiDkuOTmTBggqUxmQMzSY5PDtMVtR2qYZqNaB2UUltSU1NTt2zZEnCf2tpavvrqKwDOPPPM8K7/qKqAt7ONxqP++vZExRgzPFfkQIx0DW5vmvV3UQghhGjF3NVuZr03y1SD0rReaTwz7hlio2Ob4cqax5AhQygsLCzUWg9x8rjW5s+ECCQmHsY/AWPuMxqP7vzIKEvdIdEoWnDu1BZNaRNCCCGEaA3iXHEsGLuAnPwclm1b5rdvjyvKRebATLJHZrepgCecJOgRzkrsCRfeY3wIIYQQQgjL4lxxzM2Yy+xhs1latJT8ffmUV5eT4EogPSWdiYMmSkqbRRL0CCGEEEIIEYGS45OZPnQ604dOb+lLafUksV4IIYQQQgjRpknQI4QQQgghhGjTJOgRQgghhBBCtGkS9AghhBBCCCHatFYb9CilRiilspVSuUqpb5RSWikVsOmQUmqed58AH/ODjB2llHpLKVWilCpTSq1XSk1t4vpOU0r9XSn1nVLKrZTaqpR6UCklTWqEEEIIIYRoRq25etv9gLWWtYY1wDY/2zf421kpNRl4BSNA/BAoBi4FXlRKDdVaN6rNrJQaCOQBycDnwGogDXgAuFQpdanWutLGtQshhBBCCCEsas1BTx6wGcj3fOwEzHRnek5
YKZEyilugHPA9HAZK11rmd7L+Aj4G6l1Bta6w8aDH0BI+B5Umt9u2eMC3gVmAj8Cphn5hqEEEIIIYQQoWm16W1a6xyt9QNa69e11vvCdJpbgU7Acm/A4zn3fuCXnk/v9h2glBoJjAIO+OyD1roamAVUAXM8QZAQQgghhBAizFpt0NNMrva8Lvbz3puAGxjbYJ2Od8zrDVPYPMHSaqArMNrhaxVCCCGEEEL40R6DnkuUUo8rpZ5RSv1GKTUiyL7neF4/afiG1voExnqdOGCwmTENtg+1cM1CCCGEEEIIm9pjitVPGnz+kFJqCTBNa13m3aiU6gR09nz6TYBjfYNRoOAMjPVFAKebGINnTJOUUlsCvDXAzHghhBBCCCHaO0eDHqVULHA+MAzoAXQBjgAHgU+BtS1YtWwbcA+wAtiFkWJ2IfAHYDJGsYKJPvsn+vz/4wGOWe55TfIzzsoYIYQQQgghRJiEHPQopaKAa4HpwCVAB+9bPrt5++ecUEr9F3gWY81LbajnN0t
XKDTeXAP5VS7wOfAZlKqfO11mub65rM0FoP8bfdMwOU2syXI4QQQgghRKsTUtCjlJoG/BY4FSPI2QOsB74ESoBjGCliXYHvAyOBq4ArgW+VUvd
V8M5RpCpbXeq5T6O8Ys0BWAN+gp89mtI8bX0lCC57XUZ5t3XMcAp/Q3ps0origmtyiXgn0FlFeXk+BKID0lnYmDJpIcn9zSlyeEEEIIIdoh20GPUmozMAT4CqPp5j+11l+bGNcfmAL8GPi7UupOrfUwu9fhkCLPa2/vBq31MaXUUYyg7TSg0M+40zyvu3y27QaG+7xnZkyr5652M3/9fJZvX051bXW99/L25vH0pqfJHJhJ9shsYqPNtFMSQgghhBDCGaFUb6vGaNiZqrX+nZmAB0BrvUN
ZDW+vsYa2maLcUtiK6e1/IG2zd5Xs9tOEApFQOchVG2equZMQ22bw7wfqvjrnYz671ZLCla0ijg8aqurWbx1sXMXDkTd7W7ma+wsZ07d6KU4uKLL+bYsWPcdddd9OvXj5iYGO644w4ASkpK+NWvfkVqairx8fF07tyZSy65hDfeeCPgcXNzczn
PPp2LEjycnJXHfddWzbto158+ahlOKFF15oNGbz5s2MHz+eLl26kJSUxIUXXsjKlSv54IMPUEoxbdq0evvv3buXP/zhD1x00UWceuqpdOjQgZSUFCZNmkR+fn7Aazt+/DiPPPIIw4cPJzExkcTERM4
3xefLFFJ1uFEEIIIcLO9kyP1jrQTb2VYywFloZ6nFAopRQnCxg0LDP9Jkaxgyyg4ZqgazDKVb+htXY3GPMAMF4pFetbuEEp1Qv4AXAYWOPYF9HC5q+fT8H+AlP7FuwvICc/h7kZc8N8VeZUVFRw0UUXsWvXLi666CLOPfdcunbtytatWxk7dix79uyhb9++XH755ZSWlrJ27VrGjx/Po48+yj333FPvWE888QR33HEHUVFRXHjhhaSkpLBu3TpGjhzJ+PHj/Z4/Ly+PsWPHcvz4cYYOHUpqai
t2/niiuuYPbs2X7HLF++nHvvvZczzzyToUOH0qlTJ4qKili6dClvvPEGb7zxBpdddlm9MQcOHGDcuHFs3ryZlJQUL
oIrTWfPzxx0ybNo2CggKeeuopZ76pQgjRSkmKthBtV7soWa2U6gFcD7yktS712Z4I/BE4D9gH5DYY+hxwHzBBKTVJa53rGdcTo+obwGO+A7TW65VSa4BRQA5wh2eMC3gaiAGe1FpXOfk1tpTiimKWb19uacyybcuYPWx2RPwDsn79ejIyMtixYwddunQBoKamhuHDh7Nnzx7+8Ic/cPfddxMVZUyKbtu2jcsuu4zs7GyuuOIKzj
LAB27NjBL3/5Szp06MD
7/NmDFjAKiurmbGjBn8/e9
3Tu2tpapk2bxvHjx/nd737Hr3/967r3/va3v3H
f6veZRo0bx+eefM2RI/RoX77zzDtdeey0/+9nPKCoqwojnDTfddBObN2/m9ttvJycnh9hYI8Vw
79XHPNNfzlL3/h6quv5oo
D5nRRCiNZLUrSFaPsca06qlJqqlJriKVsdbL8LlFJTHTjf1Uqptd4PPFXjfLcppa727J4A/AX4Tim1Sim1SCn1LrATuA2jrHaW1rpemWmtdQlwM0YK3mLP2P9grGMaCPxJa/2Bn8u7CTgE3K6U2qyU+rdnzCTgY+CRUL/+SJFblBswpS2Q6tpqlha16ARfPU8++WRdwAPw+uuv89lnnzF58mR+8Ytf1AU8AAMHDuSxxx6jpqaGZ599tm77888/z4kTJ/jJT35SF/AAuFwu/vSnP5GY6FsB3bBq1Sq2bt3KoEGDyM7OrvfeLbfcwqhRo/xe79lnn90o4AG4/PLLue6669i+fTuff/553fZPP/2Ut956i/T0dP70pz/VBTwAvXr1YuHChQAsWLAg0LdICCHarNaYoi2EsM6xoAd4AXgJ+FAplRJkv+lA48fe1vXAmKHxfngfa/tu6+HZdghj1mUDMBhjLdEojNmdx4CztNZ+08201kswUtzewShQcBVGz59pWuu7A4wp8uz7gucaJmIETg8Bl7ZgryLHFewzl9bWUP6+wGtPmlPv3r1JS0urt+3dd98FYNKkSX7H/OAHPwCMWSKvNWuMX5
uu0f5dunRplG7mO2by5Mn1AiuvH/7whwGvu7KykuXLl3PfffcxY8YMpk2bxrRp0/jss88AKCoqqtvX+/VkZmb6PY93jY/v1yOEEO2FnRRtIUTr43R6WzmQDhQopTK11vbuiE3QWr+AEVSY2bcUyG5yx8Dj12CU2bYyZg/GjE+bVl7dsPZDeMc57fTTT2+0befOnQBMmTKFKVOmBBxbXFxc9
37t0LQJ8+fUyfx84YgM8++4x
7227jr9KS09WRHdu999993HfffdF3CM2y1PL4UQ7UtrT9EWQpjndNCzGKMq2aMYMz63aq3/6fA5RARJcCU0vZOD45wWFxfXaFttrVFQ8Io
qBXr14BxyYnN/8/eFp
+enbu3MnMmTOZOXMm/fv3JzExEaUUv/71r3nkkUfQWteN8X49o0ePZsCAAc1+zUIIEalCSdGePnR6mK5KCBEOjhcy0Fo
pT6Avg38A+l1Fla6183NU60TmkpaeTtzbM8Lj0lPQxX44zTTjNaKd16661MnjzZ1JjevXvz1VdfsWfPHlJTUxu9v2fPHr9jAr0XaPuXX37Jl19+SVpamt81ODt27Gi0zfv1ZGZmcvfdfjMyhRCiXQolRVuCHiFaFyfX9NTRWr8DnI+x9uVepdRyT6U00cZMGjQJV5S12NkV5WLioIlN79hCxo0bB8DSpeaLLXiLDixZsqTRe0ePHq1bV+NvzNKlS+vNzHi9+uqrjbYdPnwYOBnINHxv5cqVj
+XqEEKI9aO0p2kII88IS9ABo
8CRgLvAeOBj5VS/cJ1PtEykuOTmTBggqUxmQMzIzoXevLkyaSmprJo0SIeeughKivr153QWrNmzZq6QgRglITu0KEDL730Eh9++GHd9pqaGu6+++56a2y8LrnkEgYNGsRXX33FH/7wh3rvvfDCC6xev
RmIEDBxIVFcWqVavqFStwu93MnDmTkpKSRmPOO+88xo0bx5o1a5g9ezbHjh1rtM+mTZt4++23g3xXhBCi7WntKdpCCPPCFvQAaK2PYhQAeBI4C1gPDA3nOUXzyx6ZTVqvtKZ3BNJ6pZE90nZNiWbhcrlYtmwZ/fr144EHHuD0009n3LhxTJkyhcsvv5yUlBRGjx5Nfv7JCnQDBgzgD3/4A5WVlYwZM4ZLLrmEG264gcGDB7NkyRJuvPFGADp06FA3JioqihdffJGOHTuSnZ3NsGHD+PGPf8x5553HzTffXNec1HdMz549ueWWWzh27BjnnHMO11xzDddddx19+/Zl1apVTJs2ze/X9PLLLzN8+HCefvppzjjjDMaMGcOUKVO45pprOP300xk2bJgEPUKIdictxdy/XQ1Fcoq2EMK/sAY9AF
Wq31HRilqpMwSjmLNiTOFceCsQvIGpwVMNXNFeUia3AWz4x7plU0dhs0aBAbN27k4Ycf5rTTTmPt2rXk5uaydetWhg8fzv/93
VBTJet99+O4sXLyYtLY21a9fyzjvvMGzYMNatW1dXMKF79+71xmRkZPDxxx9zzTXX8PXXX/Paa68RExPDW2+9RUZGht8xCxYs4LHHHqNfv37897
ZfXq1YwdO5aCggLOOOMMv19Pz549+fjjj3nyySdJTU1l48aNLF68mM2bN9O/f38effRR7rnnHqe+fUII0Sq0xRRtIYR/yt9aAlsHUmou8KnWOmDtR6XUaOBBIEprPSbQfqJpSqktqampqVu2bAm4T21tLV999RUAZ555pt8eLU4
ihmadFS8vflU15dToIrgfSUdCYOmhjRKW3hVFNTw9ChQ/niiy/47rvvSEkJ1sbqpJkzZ/LXv/6Vf
730F79rQGLfG7KIQQZsz7eB5Lihqvxwwka3AWczPmhvGKhGjfhgwZQmFhYaHWunEn9hA4Vr1Na/2giX0+Ai516pwi8iTHJzN96PR2WdVm+
tdO/enS5dutRtq6ys5Ne
jWFhYWMHTu2UcBTUlLCsWPH6Nu3b73tr7zyCs899xxdunThmmuuaYarF0KI9il7ZDa7ju0y1aC0NaRoCyH8c7xktRDt1X/+8x/mzp3LiBEj6NOnD8eOHWPTpk3s3buX5ORk/vKXvzQas3XrVjIyMhg6dCj9+/cH4IsvvuC
74iOjqav/71ryQkyIJZIYQIF2+Kdk5+Dsu2LfPbt8cV5SJzYCbZI7NbRYq2EKIx20GPUmpqKCfWWr8UynghIs2ll17Kpk2bWLt2LZs3b6a6uppTTz2VWbNm8atf/Yo+ffo0GtO/f39mz57NqlWreP/99ykvLyc5OZlJkyZxzz331K3rEUIIET5xrjjmZsxl9rDZkqItRBtle02PUqoWsL0gSGsdbXesiNw1PUL4I7+LQgghhDAjEtf0vETgoOenwHbgoxCOL4QQQgghhBAhsx30aK2nBXpPKfVTYLXW+ma7xxdCCCGEEEIIJ0iOSRumlKr7/zU1NS14JaK9q62trfv/vr+XQgghhBDNQYKeNkwpRWysUWXm2LFjLXw1oj0rLy8HoEOHDhL0CCGEEKLZScnqNq5r167s27ePAwcOUF1dTVJSErGxsXLjKZpFbW0t5eXl7N+/H4CkpKQWviIhhBBCtEcS9LRxnTt3xu12c+TIEUpKSigpKWnpSxLtVFxcHN27d2/pyxBCCCFEOyRBTxsXFRVFSkoKCQkJlJaWUl5eLut7RLPq0KEDSUlJdO/enehoqVQvhBBCiOYnQU87oJSiU6dOdOrUCQCtNXb7MwlhhVJKUimFEEII0eJsBz1KqVVN7HJFkH201vpSu+cWoZEbUSGEEFYUVxSTW5RLwb4CyqvLSXAlkJ6SzsRBE0mOT27pyxNCiCaFMtNzcRPvp3g+/JFpBiGEECLCuavdzF8/n+Xbl1NdW13vvby9eTy96WkyB2aSPTKb2OjYFrpKIYRoWihBzxjHrkIIIYQQEcVd7WbWe7Mo2F8QcJ/q2moWb13MzqM7WTB2AXGuuJDOKTNKQohwsR30aK3/5+SFCCGEECJyzF8/P2jA46tgfwE5+TnMzZhr61wyoySECDdpTiqEEEKIeoorilm+fbmlMcu2LaO4otjyubwzSkuKljQKeLy8M0ozV87EXe22fA4hhJCgRwghhBD15BblBgxAAqmurWZp0VLL57IzoySEEFbZDnqUUmuVUpeHcnKl1FVKqXWhHEMIIYQQzirYZy4IaSh/X76l/ZtzRkkI0b6FMtPTFXhLKbVRKXWHUqq3mUFKqVOUUncrpT4F3gA6hXANQgghhHBYeXV5s4xrzhklIUT7Fkr1tlRgJnA/8Cfgj0qpbUA+8BVwGCgFkoBuwJlAOjAQUMB+YDawMIRrEEIIIYTDElwJzTIulBml6UOn2xorhGifQqneVgP8n1LqWeA64FZgNDDYu4vP7t5OmDXA/4BngSVa6xN2zy+EEEKI8EhLSSNvb57lcekp6Zb2b64ZJSGECGWmBwBP4LIIWKSUSgIuAIYCPYHOwFHgALAJ+FhrXRbqOYUQQggRPpMGTWLBpgWWUs9cUS4mDppo6TzNNaMkhBAhBz2+tNalwDueDyGEEEK0QsnxyUwYMIElRUtMj8kcmGm5gWhzzSgJIYSUrBZCCCFEI9kjs0nrlWZq37ReaWSPzLZ8jkmDJuGKsvb81c6MkhBCSNAjhBBCiEbiXHEsGLuArMFZAQMTV5SLrMFZPDPuGWKjYy2fwzujZIWdGSUhhHA0vU0IIYQQbUecK465GXOZPWw2S4uWkr8vn/LqchJcCaSnpDNx0MSQA5DskdnsO
LVINSuzNKQgihtNZN7yUijlJqS2pqauqWLVta+lKEEEKIkLir3eTk57Bs2zK/xRNcUS4yB2aSPTLb1oySEKL1GDJkCIWFhYVa6yFOHldmeoQQQgiP4opicotyKdhX4PiMhgisOWaUhBDtm8z0tFIy0yOEEM5xV7uZv34+y7cvl5kGIYRoQTLTI4QQQoSBu9rNrPdmBV1TUl1bzeKti9l5dCcLxi4gzhXXjFcohBAiVI5Vb1NKneXUsYQQQojmMn/9fFOL6AEK9heQk58T5isSQgjhNCdLVm9WSm1USt2jlDrVweMKIYQQYVFcUczy7cstjVm2bRnFFcVhuiIhhBDh4GTQsxE4B8gBdiml/quUulkp1dnBcwghhBCOyS3K9buGJ5jq2mqWFi0N0xUJIYQIB8eCHq31COD7wO+BXcAY4Flgr1LqP0qpTKVUjFPnE0IIIUJVsM9cWltD+fvyHb4SIYQQ4eTkTA9a66+01vd
QcAFwALgFJgMrAE2K+U+qtS6iInzyuEEELYUV5d3qzjhBBCtAxHgx5fWuu1WuufA6cA1wD/BmKA6cB/w3VeIYQQwqwEV0KzjhNCCNEywhb0eGmta7TWbwFPA7mezSrc5xVCCCGakpaSZmtcekq6w1cihBAinMIa9CilhiilfqeU2gF8CPwEOA78y4Fjj1BKZSulcpVS3yiltFLKb6dVpVSUUuoHSqk/KKU2KKVKlVKVSqntSqlnlFL9Aoy72HvcAB9rg1zfaUqpvyulvlNKuZVSW5VSDyqlpLmDEEJEiEmDJuGKstayzhXlYuKgiWG6IiGEEOHgeHNSpdRpwI89H2djzOrUAO8CLwPLtNZOJEPfD0wwuW9/jKALYB+wynNNI4HbgB8rpa7SWn8UYPx2wN972/3trJQaCOQBycDnwGogDXgAuFQpdanWutLktQshhAiT5PhkJgyYwJKiJabHZA7MJDk+OYxXJYQQwmmOBT1KqdswAp1RGIGOAvIxAp1XtNYHnDqXRx6w2XOOfGAnEBtgXw2sBOYD72utteeaY4FngGnAIqXUQK11lZ/xH2mtp1m4thcwAp4ntda3e87lAl4FJgK/AuZZOJ4QQogwyR6Zza5ju0w1KE3rlUb2yOxmuCohhBBOUp77/9APpFSt5/9uAxYBi7TW2xw5uLnzu4FY
Wl9UJKqXhgL9AZuFh
T+f9y4G3gdeNBv0KKVGAuuAA8DpvjM6SqlewB6gDOipt
WHKL+ebakpqambtmyxe4hhBBCeLir3eTk57Bs2zK/fXtcUS4yB2aSPTKb2OhAz9eEEEKEasiQIRQWFhZqrYc4eVwn09uewgh01jt4zLDTWlcopbYC6RiV5kJ1tef19YYpbF
Uqp1cAlwGjgAwfOJ4QQIkRxrjjmZsxl9rDZLC1aSv6+fMqry0lwJZCeks7EQRMlpU0IIVoxx4IebxpXa6OUigLO8Hy6L8Bug5RSjwDdgWKM9T1va61
ex7juf1kwDH+gQj6BmKBD1CCBOKK4rJLcqlYF+B3IiHWXJ8MtOHTmf60OktfSlCCCEc5HghAwCl1DkYRQKSgS1a69c822MxUtCOheO8Nt0A9AQOAh8H2OcCz4evz5RSk7XWRQ22n+55/SbAsbzbzwjwfj1KqUD5awPMjBdCtF7uajfz189n+fbljVKu8vbm8fSmpyXlSgiHyMMFIdo2R4MepdSZwN+B83w2vwi85vn/PwaeU0pd
V+28lz26GU6gM87vn0AT8V1Y4CjwJLAG9wMwz4HXA+8K5SapjW+qjPmETP6/EAp/VWrkuyf+VCiLbOXe1m1nuzgi6ur66tZvHWxew8upMFYxcQ55KK+MKmsgPwyYuwcw2cKIMOidB3NJw7FRJ7tvTVhZU8XBCifXCyelsfjLLQPTCCnNUYAYOvVzGalE4GWjToUUolYDRLTcYoo/1Mw3201huBjQ02r1JKjcYocPAD4GfAI+G6zkCLuDwzQKnhOq8QomXNXz/fVDUxgIL9BeTk5zA3Y26Yr0q0OVUVsOJe+PSfUNugeOmO9+GD+TB8ClyRAzFtL6iWhwtCtB9ONid9ACOAuFVrnam1fqzhDp7+PJ9Sfyao2SmlYoD/YPTO+QhjBso0rXUNkOP59PIGb5d5XjsGGJ7geS21ck4hRPtRXFHM8u3LLY1Ztm0ZxRXFYbqi1qe4opiFmxcy490ZTHlrCjPencGzm5+V75Gvqgp4OcuY4WkY8HjVVsGGF+Dlycb+bYydhwtCiNbJyaDnCmCz1vr5Jv
CZzq4Hkt8RQueBG4EiMAG6+1tvNfcm+6W+8G23d7Xk8LMM67fZeNcwoh2oHcoly/ZZODqa6tZmnR0jBdUevhrnYz7+N5jFs8jqc2PkXe3jw2H9xM3t48ntz4JOMWj+PBvAeprJH+0Ky4F3YF6sndwK6P4O221Z9IHi4I0b44GfT0BL4ysV8MgWdBmsNTGMULtgKXa62P2DxOV89reYPtmzyv5wYY592+2eZ5hRBtXME+c0+eG8rfl+/wlbQu3lSlJUVLAgaN3lSlmStn4q52N/MVRpDS/UZKmxUbFxlrf9oIebggRPviZNBziJOVy4IZjNEMtNkppR7GWIOzGxintQ7lv96TPa8NS1O/6Xkd76lW53v+XhjrgA4Da0I4txCiDSuvbvgsJbzj2gpJVbJg40uBU9oCqa2CT14Kz/W0AHm4IET74mTQswZIV0oNC7SDUuoi4CxaoD+NUupO4D6MXjxjtda7mxiCUuoOT4EG321KKXUbcCeggQW+73uas67BmPnK8RnnwijiEAM8qbW2+K+NEKK9SHAlNL2Tg+PaAklVsminzeduO02mw7UC8nBBiPbFyZLVfwQmAsuVUjOBd33fVEpdArwAVHOyTLRtSqmrgft9NnXwbF
s+0hrfWbnkDMW1jha+A+pZS/wz6ntfb9L/odwB+VUp94xsUBZwP9gFpgjtZ6g5/j3ATkAbd7vu5CIB3oj9ELKGzV3oQQrV9aShp5e/Msj0tPSQ/D1bQOoaQqtctGpCfKmt7HyXERSB4uCNG+ODbTo7VeB8wBTgHeAI5gzIRMVkodBlZ63vu51tqJ9Sw9MKrAeT+8UYzvth6ebV183s8AfhrgY2CDczwGrMCoSnc1RrGGKOBl4Hyt9V/8XZinYelwjCCvB0YwWAs8BFzqpx+QEELUmTRoEq4oa8+kXFEuJg6aGKYrinySqmRRh8Sm93FyXARKS0mzNa49P1wQojVzMr0NrfXTGGtWXscIeBRGE85Y4B3gIq31QofO9YLWWjXx8YJn3w9M7Fu3v885ntJaj9da99daJ2qtY7XWfbXWP9FaB/2XUmu9R2t9k9a6t2fcIK31A1
drxyVghhRnJ8MhMGTLA0JnNgZrvuGi+pShb1HWVz3Ghnr6MFycMFIdoXR4MeAK31Wq11JtAZ6IVR0jlJa32V1loW7wshhAnZI7NJ62XuSXRarzSyR7atcsJWSaqSRcOnQlSMtTFRMXDu1PBcTwuQhwtCtC+OBz1e2nBQa73f08xTCCGESXGuOBaMXUDW4KyAT6NdUS6yBmfxzLhniI2O9btPeyGpShYl9YJhlvpyw/ApkNgzPNfTQuThghDth9Jat/Q1CBuUUltSU1NTt2zZ0tKXIoQIs+KKYpYWLSV/Xz7l1eUkuBJIT0ln4qCJ8tTZo7iimHGLx1kqZuCKcrEya2X7/R5WVcDLWeYalJ4xGm5cAjFx4b+uZuaudpOTn8Oybcv8/v64olxkDswke2R2u3+4IERzGDJkCIWFhYVa6yFOHtd20KOU2hHCebXWekAI49s9CXqEEKK+eR/PY0nREtP7Zw3OYm7G3DBeUStQVQFvZxuNR/317YmKMWZ4rshpkwGPL3m4IERkiMSgp9bGMG9xA7TWYUutaw8k6BFCiPrc1W5mvTfLVIPStF5pkhboq+yA0Xh050dGWeoOiUbRgnOntrmUNiFEZAtX0GO7T4+/oEUp9SQwDfg/4F/ATs9bZwA3ALOBF7XWc+yeVwghhPDHuw5KUpX8K64oJrcol4J9BY1nMhJ7woX3GB9CCNEGObamRyk1B3gUGKW19vuYTSmVhtGc85da68cdOXE7JTM9QggRmKQqneSudjN
XyWb18ugaAQIuJFXHpbowMptQX4Rmt9eRP7vQ30cfoLaW8k6BFCCNEUqyl/C8YuIM7VttfuCCEiW8Slt/nRH9hsY
DwIUOnlcIIYRocUHTx1podmn++vmmAh6Agv0F5OTnSHEHIUSb5GTQUwJcqJSK01q7/e2glIrDCHgOO3heIYQQosUESx/L25vH05uebpH0seKKYpZvX25pzLJty5g9bHazBmmRGCwKIdoeJ4OepcDPgMVKqZ9
Xf6vqmU6gs8BaQACxw8rxBCCNEizKSPVddWs3jrYnYe3dms6WO5RbmW+haBca1Li5Yyfej0MF3VSZEaLAoh2iYny0bfD3wJXAUUKaXylFL/9nzkAVuBq4GvPPsKIYQQrZqd9LHmUrDP3HU1lL8v3+EracwbLC4pWhIwMPMGizNXzsRd7TeBRAghTHMs6NFaHwYuAP4KnADOA673fJwHVAELMaq7SXqbEEKIVs1u+lhxRXGYrqi+8uryZh1nRSQHi0KItsnRBqFa6yNa61lAD+AijN48NwAXAz211jMl4BFCCNEWhJI+1hwSXAnNOs6sSA8WhRBtk6NBj5fW+rjWerXW+hXPx4da6/A/OhJCCCGaSSSnjwGkpaTZGpfec7jDV1JfpAeLQoi2ybGgRylVo5T6m4n9nlVKWfuvnRBCCBFhIjl9DGDSoEm4oqzVK3JpzcSNy6GqIkxXFfnBohCibXJypkd5PszuK4QQQrRakZo+5pUcn8yEARPM7expVJ5ZWkbyrjx4Ozts1xXpwaIQom0KS3pbEzoDlS1wXiGEEMIxttPHUtIdvpLAskdmk5Y8tOkdlSKtwk12iWfZ7cZFUHYgLNcU6cGiEKJtCinoUUqd7v3wbEr03dbgo79S6krgMmB7yFcuhBBCtCBb6WNRLiYOmhimK2oszhXHgoSzyDpWisszm9PomrQm61gpz+w/QKx3l9oq+OSlsFxTawgWhRBtT6jNSXcCvv8Vnez5CEYBz4Z4XiGEEKJFedPHlhQtMT0mc2AmyfHJYbyqxuJ2r2PuocPMPnyUpUmJ5MfHUq6iSNC1pFdUMrG0jOTa2sYDd34EF97j+PVM6nslCzb+hWr8B2H+KBRrvl0DwMRBE5v9eyiEaP1CDXo+5GTQcxFwAKNBqT8ngO+A17TWUoJFCCFEq5c9Mptdx3aZ6jmT1iuN7JHhWysT0IkyAJJra5l+9BjTj1ob56iqCpKXzGRCWSlLOiUaa4lU08t8NZoNBzaw4cAGnt70NJkDM8kemU1sdKzz1yiEaJNCCnq01hd7/79SqhZYobW+OdSLEkIIIVqDOFccC8YuICc/h2XblvktxeyKcrXsTXqHxOYdF8yKe2HXR2Qrxa4YFwXxcZYPUV1bzeKti9l5dCcLxi4gzmX9GEKI9ifUmR5f/YAwPBYSQgghIlecK465GXOZPWw2S4uWkr8vn/LqchJcCaSnpLd8OlbfUbDjfRvjRjt7HaX74dN/AhCnNQv2HySnWxeWJSVSbWK2p6GC/QXk5OcwN2Ous9cphGiTlA6wsNGxEyg1EEgGvtVa7wnrydoRpdSW1NTU1C1btrT0pQghhIhkpfvhz0OM4gRmRcXAXYWQ2NO56/jwUVj1cKPNxVFRLE1K5OP4OAriYk2lu3m5olyszFopa3yEaEOGDBlCYWFhodZ6iJPHtV29TSnVSyl1vVJqVID3RymlvgS+AtYAO5VSa5VSqXbPKYQQQgiLknrBsB9bGzN8irMBD8DONX43e9caZVS4LQU8YKS6LS2SZcJCiKaFUrL6RuBfQKMgxjO78zYwCKNaW4nnrZHAf5VS3UI4rxBCCCGsuDIHzjCZrnbGaLgix/lraKIwQkG8vfVO+fvybY0TQrQvoQQ9FwFVwKt+3psHJADfAOdorXsAPYA3gJ7Az0M4rxBCCCGsiImHGxfDiGlG6po/UTHG+zcugZgwFAdoojBCubJ3S1JeXW5rnBCifQmlkMH3gY1a63rFL5VSMUAmRinrX2qtPwPQWpcopX4K7AauAn4bwrmFEEIIYUVMPIx/AsbcZzQe3fmRMfvSIdEoWnDuVOdT2nw1UVAhQfvpFWRCgivB7hUJIdqRUIKensB6P9vPBToCFcBy3ze01oeVUuuB4SGcVwghhBB2JfY0mo6GofFoUMOnwgc5AQsqpFVUkhcf
mw6SnpoV6ZEKIdCCXoicVIYWvoXM
p1prt5/39wUYJ4QQIoyKK4rJLcqlYF9BZJVUFu2Dt6DCJy/6fXtSWRkLuna2VL7aFeVi4qCJTl2hEKINCyXo2Qec7Wf7xRipbWsDjEvkZGEDIYQQYeaudjN
XyWb1/eqHlm3t486XAvms+VOXBoO+z6qNFbyTW1TCgtZ0mnRNDaVCW3zIGZErALIUwJpZDBaqCvUmqGd4NSajBwrefTFQHGDQW+DeG8QgghTHJXu5n13iyWFC1pFPB4eTvcz1w5E3e1vwl6IRzSREGF7JLDpLkrTQU8ab3SyB6ZHYaLFEK0RaEEPX8CaoEFSqkPlVJLMNb4xAKFWuv3Gg5QSp0NnAEUhHBeIYQQJs1fP5+C/eb+k+vtcC9EWHkLKtxVCJfcD/3HwGnp0H8McWN+w4If/ZeswVm4ovwno7iiXGQNzuKZcc/IzKQQwjSltbY/WKmbgP8DfGtbHgAu01pv9rP/X4HpwGSttXQTC4FSaktqamrqli1bWvpShBARqriimHGLxwWc4fFHOtyLSFFcUczSoqXk78uXNWhCtCNDhgyhsLCwUGs9xMnjhrKmB63135VS72CUoO4B7AFe01ofCzDkU+BOYGUo5xVCCNG03KJcSwEPnOxwP33o9DBdlRDmJMcnM33odPldFEI4IqSgB0B
R3wnMl9F4R6PiGEEOYU7LOXSZy/L19uNIUlUhlQCBHpQg56hBBCRCa7neqPnjjKws0L5QZWNEkqAwohWgsJeoQQoo2y26n+i0NfUHiosN42uYEVDXkrAwYrlOGtDLjz6E4WjF1AnCsu4L5CCBFOoVRvE0IIEcHSUtJsjdP4L3Ajpa2FL6kMKIRoTWSmRwgRkWSNQOgmDZrEgk0LLBczaIr3BnZuxlxHjytaj+KKYpZvX25pzLJty5g9bLbfv1/5exdChJsEPUKIiCJrBJyTHJ/MhAETWFK0xPFjB7uBNUNucls3pyoDyt+7EKK5SNAjhIgYskbAedkjs9l1bJfpNCSz7Ja2lpvctsGJyoDy9y6EaE6ypkcIETFkjYDz4lxxLBi7IGiHe4Wydez8ffmW9vfe5C4pWhJwlkDWDbUOdisD+o6Tv/dWpuwAfPgovJQJz401Xj/8o7FdiFZAZnqEEBHB6TUC4qQ4VxxzM+Yye9hsvx3uV+5eyReHvrB8XKs3vnZucptj3ZCk2llntzKgd5z8vbciVRWw4l749J9QW1X/vR3vwwfzYfgUuCIHYmQmTkQu20GPUur5EM6rtda3hDBeCNHGOLVGQAQWqMO91RkbLys3vpF4kyupdvalpaSRtzfP8rj0lHRA/t5bjaoKeDkLdn0UeJ/aKtjwAhRvgxsXQ0x8s12eEFaEMtMzLcB2b63ThvkSvts1IEGPEKKOE2sEhD2h3sCaEWk3ubKeJDR2KgO6olxMHDQRkL/3VmPFvcEDHl+7PoK3s2H8E+G9JiFsCmVNzxg/H09jBDXrgTuATM/H7cA6z3v/B1wSwnkBUEqNUEplK6VylVLfKKW0Usp/c4n646YppdYrpcqUUiVKqbeUUhc0MWaUZ78Sz7j1SqmpTYw5TSn1d6XUd0opt1Jqq1LqQaWU/KsphB9OrBEQ9kwaNCngep9AfG9gzQjlJjccZD1JaLyVAa3IHJhZN2snf++tQOl+I6XNio2LZI2PiFi2gx6t9f98P4A4YCbwM611htb6Sa31a56Pp7TWFwCzPB9OzH3eDzwCTARONTNAKfU48HfgLOA9jOBsHPChUiozwJjJwP+AK4DNwNvAIOBFpdQfA4wZCGzEmA07BCwHooEHgPeUUpInIUQDoa4REPaFegNrRiTd5NpNtSuuKHb8Wlqz7JHZpPUy1wA3rVca2SOz6z6Xv/dWYONLjdfwNKW2Cj55KTzXI0SInKzedh/widb6mUA7aK3/CmwAfuPA+fKAh4Brgd5AZbCdlVJjMWacDgHnaK0ztdZXABcCNcDflVJdGozpBjyPEbBkaa0v1lpnAd8DtgF3K6Uu9nO6F4Bk4Emt9dla6x8CZwJLgVHAr2x8vUK0aWkp5m6eGrKSYiUCC+UG1oxIusm1m2p32eLLGP2v0cx4dwZbD291/LpaGzOVAV1RLrIGZ/HMuGfqrYuSv/dWYOcam+NMpsMJS4orilm4eSEz3p3BlLemMOPdGTy7+Vl5GGOBk0HPMKDIxH7bgKGhnkxrnaO1fkB
Wep+JIXd5Xh/WWtddp9Y6D3gG6ELjdUa3Ap2A5V
XJ8x+4Ffej6923eAUmokRmBzwGcftNbVGLNcVcAcpZRUzhPCR3OkWInAQrmBNSOSbnLtptpV1VZx9MRR8vbmMfm1yVy77FqOnTjm8NW1Lt7KgCuzVjJn+BwyemcwtMdQMnpnMGf4HFZmrWRuxtxGvy/y994KnChr3nHCL3e1m3kfz2Pc4nE8tfEp8vbmsfngZvL25vHkxicZt3gcD+Y9SGVN0Gf/AmdLVldjpI015SzPvs1GKRXPyXVEi/3sshiYA4wHHvPZfnWQMW8CbmCsUipOa+1uMOZ1rXW930Ct9X6l1GrPtYwGPrD4pQjRZnlTrJYULTE9xmqKlQiuqdLWoZRwDnXhu5OcSpn7+ujXXL74clZMWkGXuC6OHLO1ClQZMNj+8vce4TokNu840YgUXHGWkzM9HwJnKaUeUEr57XSnlLofONuzb3M6E4gFDmqtv/Hz/iee14YzUOc0eL+O1voE8DnGWqbBZsY0cS4h2r1wp1gJc7w3sAsvW8iiqxax8LKFTB86PaQbzuZYN2SWkylzZVVlTH07aF0bEYD8vUe4vqNsjhvt7HW0Y1JwxVlOBj2/BsqBucBWpdQjSqmZno9HlFJbgXlAGcb6n+Z0uufVX8CD1rocOAJ0VUolASilOgGdg43z2X6G2XMFGBOQUmqLvw9ggJnxQrQm4U6xEi2rOW9yg+W/2021C+Tro1/LGh8b5O89wg2fClEx1sZExcC58hDACVJwxXmOpbdprQuVUpcALwLfB+6lcc+eL4FpWustTp3XJO9c6/Eg+5RjrOtJAkp9xgQb582RSLJwLn9jhBAe4UyxEi3Le5Obk5/Dsm3L/Ka6uaJcITUENdNw9Iq+VxCtoqnRNba/lob+mP9HFl620LHjtRfy9x7BknrBsB/DJy+aHzN8CiT2DN81tSOR1tusLXB0Mb3WugAY4qlo9gPgFM9be4HVwAda6yZ76YiTtNZD/G33zPakNvPlCNFsrK4REK1DOG9yzea/v7HjDZLjkx19Ilp4qNCxY7VH8vceoa7MgUPbzTUoPWM0XCHpVU6RBr7OC0sFMa31B0TWIn1vKZGOQfbxJnmXNhjjHeevRE/DMWbO5W+MEEI0j7IDxpPbnWuMKksdEo0c/HOnNusT2nDc5FrJfy+uKHY08Kmy2s9EiNYgJh5uXAxvZxuNR/39nkfFGDM8V+RAjCyid0ok9TZrK9pL2eTdntfT/L2plErASG07rLUuBdBaH1NKHcVY13Ma4O8xnvd4uxqca3igcwUYI4QIk+KKYnKLcinYV9C+02aqKmDFvUaH9YY3Ljvehw/mt+obFzv570cqj3BN/2t4e+fbltNIGoqxuvZBiOZm94FHTDyMfwLG3Gc0Ht35UYs+MGkvIqm3WVthO+hRSl3o+
tdZun89N0Vo3ZwW3rzCal/ZQSp2qtf62wfvnel43N9i+CaN56bk0CHqUUjEY5bfdwNYGYyb4HLOhQOcSQjjI7NqOPkl9+PTAp207IKqqgJezgqeo1FbBhhegeBvcuJji6vJWFSzazX/v37k/K7NW1qXabS7eTHmV9Selqd0l21hEKKceeCT2hAvvMT5E2KWlpJG3N8/yOGngG5iyu8RGKVWLUajg+1
T6fm6K1jrZ14sDX4wZitdaBymW/BVwJ3Km1frzBe09g9Om5R2v9mM/2XwI5GM1JMxuMmQjkAm9orcf7bB8JrMNoTnq6b68epVQvYA9GClwv
XtfAil1JbU1NTULVuauyaEEJHPzNqOYEJdTB9xXptjejGyWynmn3key6sOOF5oIJyzbjPenWHrBiGjd0a9AgRbS7Yy+fXJlo+z5NolDO46uOkdhWhOZh54eJ0x2khli4kP/3WJJhVXFDNu8TjLvc1WZq2MyAdTVgwZMoTCwsLCQOva7Qolve0ljCDnaIPPI9WfMIKe3yil3tRaFwEopTKA2zBKVv+twZjnMMprT1BKTdJa53rG9AT+4NnHt5kpWuv1Sqk1wCiMgOkOzxgX8DQQAzwZSsAjhAjOytoOfxo2eyurKmtVsx71lO6HT/9JcVQUuUmJFMTHUq6iSNC1pFdUMrG0jOTaWsAIeGb16kFB5XcBD2enEV7drNu25VRrP7Nunz5N5qDQgkyn8t8HdxtM30592Xlsp+lj9OvcTwIeEZlW3Gsu4AFjv7ezjVQ20eKkga/zbM/0tDSl1NXA/T6bRmKUxl7ns+0hrfWbPmMeB27HKCe9EugAjPOMy9JaL/NznsnAq559PgAOAWMx1gD9SWt9t58xg4A8oDvwGUZqXDrQH/gYuMR3BsgOmekRwj87T8eC6de5H3tK94SlvHJzcH/wCPM/W8jypASq/fSNdmlNZmkZ2SWHeaRbN5Z0SgStwX+P6XqyBmcxN2Nu8PNXu5m18jYKDgTq13xSWs9zWTDur7Y6ijs10wNwxH2EK3OvpKyqLMCokxJjEnkn6x06dehk+dxChFXpfvjzEP/FBwKJioG7CmWNToSwkrWQ1iutzfSzCtdMj5PNSZtbD+A8nw/vv9C+23r4DtBa3wHcBHyBEexkAO8BF/oLeDxjlmCs63kHo0DBVcA2jH5DjQIez5giz74veK5hIlALPARcGmrAI4QIzM7ajmC+Pvp1wON5Zz1mrpyJu9rt2DmdUFxRzNOfPs2lu/7Nkk6JfgMegGqlWNwpiVtSerEsybMA1kTAA+Ya4c1f+zsj4GnqAZvWFBz4hJx1vzd17obsNhz1l
eJa4LK8YvpV9Ux8DXrTX9ojryzoTlEvCIyLTxJWsBDxj7f/JSeK5HWCYNfJ0VtpkeTwrYqZ5Pv9VaHwjLidopmekRwj+7T/xDZWbWozkEK+AQkMmZHX/mDJ8TsOx0cUUx4169hGoLmc8uFCuvX2U5ReOb0m+4KvcqtJVz+cl/L64oJvfLVyjY9ALllUdB13I42sXR6CiqlSJGa1IrT3DPocMMrq6WdRAicr2UaRQqsK
GJi6zOmrESEqrihuNw18I3FNj19KqZ9hpJANbLC9CHhCa73A6XMKIYRXS/UoWLZtGbOHzW7Rf3xsF3CwGfBA8EZ4uZ+/ZCngAahGs3TLP5iedqelcc999pylgAfq5783ChYVEHfyqalvGmCs72lkHYSIVCeaTs90dJwIK2ngGzrHgh6lVBTG2peJGP9cHMHoRaOBM4DBwF+UUpcC1+nWuphICBHRWqpHQXVtNUuLl
oP0ihFnCwI1iQWbDjbVvHzN++wm/QE6j620V9LrLcowdg+tnGz8pMsOhNA9wZE8OC/QeJ8/0nbOMio4eJrIMQkaRDYvOOEyLCObmmZwYwCaNnzbVa625a6+Fa63O11t2B8Rj9ciZ69hVCCMfZXdvhhPx9+S12bjvNOZ0QLMgsd5fYOmbDce5qN/M+nse4xeN4auNT5O3NY/PBzeTtzePJjU9y3evX2VrH9eYOo86N6WBRawri48jp1qX+dlkHISJR31E2x4129jqEiBBOprfdBBwDLtZa72/4ptb6TaXUBozA52bgrw6eWwghAJg0aBILNi1wtJiBWc2ZWtdw1uNwxeEW+Z
CgH46faecMINHaynziXUnpxFMTMLU6trLZ8DjCB14qCJ5oNFTxrgsqREZh8+WlfqG4Ad/5OmjSKyDJ8KH+RYr9527tTwXZMQLcjJoCcVWOkv4PHSWu9TSv0Xo3KaEEI4zk5vA6c0R2qdrUIFYeKKcjGx75VG81M/3d7TOncir+GsiAnpUSfTa8KZsldeXW6r2l+1UixNSmT60WMnN3630WgEGaCgQTgbswrhV1IvGPZj042JARg+RdI0RZvldCEDM+t0ZC2PECKsskdms+vYrmZf3+Kv/LGTbBcqCJPM/uNJXnJbwOaHk8rKWNC1c8By2f64tGbiGWOB8KfsJbgSKNhn73uZHx/L9KM+G06U+i1oECxIzdubx9Obno74Xk+m+Jnpo+9oY9ZAbqJbzpU5cGi7uQalZ4yGK3LCf01CtBAn1/R8BVyilAr4yMrz3iWefYUQIizM9DZwmivKxcRBE8N6jnAXKnBFuTgn+RxT+6b1SiO7+FDQm6nkmlomlHpS/kz06QHILDtOcvptgPM9lxpKT0m3nZJYrvz887lxkXHz7+ENUpcULWmVvZ5MqaowZvr+lAqrHjZKJH+Tb7yuesjY/vrtUNUKv7a2ICbeKKk+YpqRuuZPVIzx/o1LIMZ6Y2AhWgsng54Xgc7Afz0V2upRSo0BVgKdMJp2CiFE2MS54pibMZeVWSuZM3wOGb0zGNpjKBm9M/jZOT/jmv7XBG321q9zP0vn8y1/HA7NUaggc2Amz13+nLlGeOf/lthNrzR5zOySw6RVuJsui60UaRVusk+/qm5mwO4sjBneINVuSmKCv3VEDQoaWAlSC/YXkJPfyp6yV1XAy1nGDE+gdSO1VbDhBXh5srG/aH4x8cYM5F2FcMn9Rh+e09KN10vuN7aPf0ICHtHmOdacVCkVDbwGXImRwnYQo2Q1GCWre2CUsn4Lo7qbvZWnApDmpEI4IVizt8SYRNOpZGm90sLeDXvh5oU8tfGpsB2/4dfQZCO8Dx81nuyb4FaKnG5dWJaU6DfVra4HTmIqsTfm1t18TXlrCpsPbnbui/ThbSZr9/s6p+RI/TU9Xp7GjsUVxYz9z1hqdI3pY0araN677r3Ws8bntTnW1ouMmCb9jIQQTYr45qRa6xql1HjgTmAO0AfwTeTdDTwF/FkCHiFEJGiq2duCsQvIyc9h2bZlftOTXFGuZluPEc5Zj2v6X8O8C+bV+xqabIS3c43p48dpzdxDh5l9+ChLkxLJj4+lXEWRoGtJr6hkYnklyefcYKwn8HnaHK7CEGm90sgemQ3Yq
n0pqJpQEaOHoaO+YW5VoKeABqdE2L93oyrXS/UbzCCuln1HrJmi3RBjjZnLQToLXWjwGPKaX6AKd43v5Oa73HqXMJIdqv5qyC5U2Rmz1sdvBZj2YQznLY/Tv3tx602ejanlxby3SdxPSOg0/eOKUGvnFKS0kjb2+e5fNEqSi/Zaz9BamWqv1pDUqRWVpWv1y1L09jx4+
djydQOs+XZN6wh6Nr5krRQynEz/k9LerUdVBay41291Rna8Dx/MNyq+NXhgIUQkcnKF7xFgHZAB4AlyJNARQjiiJatgNTnr0QzCWQ47f1++9a/Nbtf25MEwdZmpXW3NwkS5eOWaV/jfnv+ZDlJNV/vzrjsqORx4H09jx2/KvjF9zb6+LfvW1rhmZ2Gmr573fwd5f4Hew+Dy30OvVEcvSzjIu2YrWOU375qt4m1GwYQAJduFiAROBj1HgR0OHk8IIQBzpZq9VbB2Ht3JgrELiHO1raeOdmc9zLA1i9R3lPGk1/I4893e7fRcyhyYyeCugxncdbDpQM5b7S8nP4dlXy2m2k/Nhbp1RyWHiQ20FNansaPdSmwV1a1ksb+NmT4AdC1UHDZ+dxZkGEHwLSshvoujlyccsOJec6WuwdjPT8l2ISKJk9XbNgIDHDyeEEIA7aAKlgmTBk0KW/ltW7NIw6cGLoEbiI1u79kjs0nrlWZqX9+1OlbVVftTZzCn5AgZFRUMdVeSUVHBnJIjrNz9LXMPBQl4oF5jx3iXvSfedsc1O7szfQ0Vb4XHz4bjJc4cTzjD7potn5LtQkQaJ4OeHCBdKZXl4DGFEO2cnVLNy7YZ1bPaEu+sRzjYaqrq7fZuRYNu78UVxSzcvJAZ785gyltTmPHuDJ7d/Gy9n52Znkt1ZbQdqKCX3O8iph89xsJ9B1m0dz8L9x1k+tFjgdfweHU5o15jx9OSTrN1frvjml3fUc4dq/IYPH+5c8cToQtlzZYQEcrJx4YVwHPAK0qpN4DXMSq2+Z3j11p/6OC5hRBtlJ0GldW11RFVBcup4gum155YEFJTVZvd3q2uz2rWghLDp8IHORZv+KJg2pv1FnJnnJJh6+d0wSkXWB7TImx9n4Io3gr7C2WNT6Swu2Zr50dSqEJELCf79NRi9OfxZkMHPbDWOtqRE7dT0qdHtBcz3p1hay1LRu8MFl62MAxXZF6wm3uwV/LaXe0OWkZbodDB
Nbj7dfjW1VFUYu/8ZF/m+Ao2LqVXcysz7LK61XWsusz3Kg/0xxRTHjFo+zXIRhZdbKttunpymeHkciAjw3Fr7Jtz7utHS49T3nr0e0KxHfpwd4iSYCHSGEsMpuqeZwlng2I1zFF5qa9biq31X8Zs1vTAcVdtfA1PF2ex9zn5HasvOjoH087KzPCikos8PmDJYvu0UYWk3AA9a+T2bs/dSZ44jQ2V2z5dRaLyHCwMnmpNOcOpYQQnjZLdUczhLPZoT75j5YGe0Waaqa2NNIawmS2mJnfdaSrUvo0qELU1KnNF9AEBNvlN+1MIPlj5V0REcC0OZm5vtkRc0JZ65LhK4ZqjMK0dwcS28TzUvS20R7sXDzQp7a+JTlcXOGz2mxNT2RktpUXFHc4k1Vfdn9WUKYAjUzyg6YmsEKpKl0xBb7upzm+336+kPQNdaPEd8V7t3p+KUJG0r3w5+HWAtko2LgrkJTfxdCBBOu9DYn1/TUAC9orW9pYr9ngZu01uGpvdpOSNAj2otICSCsaI2BWnOwuz7LV4ut8wlRpAWgYfXSBNjxgfVxsqYnsjiwtk0IO8IV9DhZslpxsoiBmX2FEKJJdko1t/TaiIJ99qqr5e+zsXC4FXFinVVr7cPkTUdceNlCFl21iIWXLWT60OltL+ABuOx39sZd/ntnr0OE5socY82aGQHWtgkRSZwMeszqDFS2wHmFEK1UczWodEprLb4Qbk6ts2qLfZjalJSzoPsga2OSB0u56kjjXbM1YlrgRsRRMcb7Ny4JuLZNiEgRUoqZUur0BpsS/WzzPdeZwGXA9lDOK4RoX7wNKlvL2ohILb4QrF8Q4EgvoWDSUtJCTm+DyOvDJPy45V144hyj8WhTYjvBLSutH
sgJF6tXON
VWwiSL1RmFiGQhrenx6c0DRsqamYMp4A6t9ZO2TyxkTY9ot1rD2ohIW9PTVL8g5ck49tffx8lg0s76rEAioQ+TaMLxEnj+cqPxaCDJg42AJ76LuWNWVcCKe+HTf9quqieEiGwRWchAKfUBJwOdi4D9wJcBdj8BfAe8prVeavukApCgR4hIFknFF6w0Aw3GqQIC8z6eZ6l3TSBDewxl0VWLTO8fbJYrUoLlNmt/Ibzza6MPT80JiO4AvYcZa3ispLRVVcDLWeb7J9242JipEEK0KhHZnFRrfbH3/3tmfVZorW8O9aKEEKI1s9OYsk9SH5I6JDl+LVb6BQXjVKNQK71rgkmINnczG2yWK29vHk9vejpi0iL
F6pzlRlW3Gv+Uaouz4y+gc1rCYmaXFCtFtOFjLoB/zCweMJIUSrZaX4AsDXR79m5sqZuKvdjl2DnWagwThRQMC7PitrcBauKPvP3dK/+9J48h+Ed5ZrSdGSgLNu1bXVLN662PHvvXBY6X4jpc2KjYuMIAeM35XX5sCfUmHVw0bjzW/yjddVDxnbX78dquR3QIi2yrGgR2u9S2t9yKnjCSFEa+a9ue/XqZ/pMU6XY84tynVk/YyXt4BAqOJccczNmMvKrJXcctYtdWuKzHJpzcQ9W4wn+UFYmeVqraWw242NL1lrlAnG/p+8dDIt7pMXAx+jtgo2vAAvT24ymBZCtE6ONwhVSl0MXAj0BgLlCuimmpgKIURLC3UdSFlVGXvK9lg657Jty5g9bLYj60zs9gsKJn9fvmPFFpLjk7ljxB0cqTxipAJqDSpIAOR5P7O0jOTaWuNJ/pj7/KYl2ZnlcvJ7Lxy2c43NcR/Bkd2hp8UJIVo9x4IepVRnYDnwA5puPqoBCXqEEBGpqXUgT218irGnj+WRCx8Jug7EzkyLk+WYw9H3JxzHzB6Zza49H1Hg3h98R6VIq3CTXXLY+Nz7JP/Cexrt2tLfe+GwE2X2xlUcNgIfK4IE00KI1svJNT05GDM824F7gGuBMQE+LnHwvEKINqq4opiFmxcy490ZTHlrCjPencGzm58Na2NKM+tANJqVu1cy+l+jOXD8QMBj2Z1pyd+Xb2tcQ+Ho+xOOY8a54ljg7kjWsVJcASqKurQm61gpz+w/QKzvLgFuaFv6ey8c1iHR3jj3UftpcUKINsXJ9LYJGCWrz9dalzh4XCFEO9OSFbesrANx17i5fMnlvH/d+3SJ69LofbuzIk7NpjjVDNRXekq6o8fziqs6ztxDh5l9+ChLkxLJj4+lXEWRoGtJr6hkojelraEAMwAt
0XDut9jlF0wKraGnvn2/nRyRlEqfgmRJvgZNDTGXhLAh4hRCjM9JXxVtzaeXSnI71jvOysA6murWbKW1N4c9Kbjd6LUTG2rsPuuIYmDZrEgk0LHC1mcFGfixw7Vj2eJ/nJtbVMP3qM6UetjWvI7oxUOGayhBOsFbuoY3WWx+tEWfBGqDvehw/mSyNUIVoRJ9PbigD510IIEZLfrftdi1XcslvtbHfp
Yebtx1PibaXvDSIbqDrXENefsFOel/e/7n6PHq9B1lc9xov5vTUsyXC/cVrpksYVPZAfjwUfjkBXvj7ZYhj+koFd+EaGOcDHqeAi5WSg108JhCiHbkm9JvWL7NesUtp9b4hFLt7I/5f2y0ze4MS5Xdp9N+WO0X1JSwrXkZPhWiLAaJUTFGipEfkwZNstwHyBXlYuKgidauQYRHw746FYftHSemo71xlcesV3wTQkQ0J/v0PAc8CfxPKXWTUuo0p44thGgf7vnfPWj8L2QPxKneMZQdoLykyPbwwkOFjbadqD1h61imx3mfgr+UCc+NNV4
OPJhow41wzUy/aal6auNakXDPuxtWMOnxJwTUVyfDLX9LvG0uEyB2ZKuepIYKavjlld+9oIpl2w9zNrY3wboQohIpKTJau9qwUV8JxnW6Ddtdba8R5BQojWq7ii2G/gYEZIvWN88vYTenaB+Hh7h/Fzcxa2dSUW1xp4m4HOHjabpUVLef7z5ymrslcC2PLXZOVar8yBQ9vNPWE/Y7QxJgB3tZvdpbtNX+a5Pc8le6Q8rY8IK+41P8vSlAGXQPeBRgBlVsrZ8N1Ga+cJUj5dCBEZnExv2wPsBnZ5XoN9WOvWJ4Ro83KLci3P8njZnn1o8EQ5raLS3nGAGD9Pk8OyriSE7vLJ8clMHzqds5PPtnVdTV5bqNcKcONiGDEt8NP5qBjj/RuXBF08Pn/9fD458InpSz2j0xmOVwIUNpTuNwJkJ3jTH6/MMYJkM84YDR2S7J3Paj8gIUSzcjK9ra/Wup/ZD6fOK4RoG0JZTxNo9qHJPj8NnihPKitDBegT05TU7qmNtoVlXYmVp+AB1hrYDcaiVJS1NS92rjUmHsY/AXcVwiX3Q/8xcFq68XrJ/cb28U8EDXjsVOF7fcfrYe3/JEza+FLoKW1e3vTHmHhrwXS1zaIEdhuoCiGahaSYCSEiQij9URrOPpjq83P65WR/+k98n+0n19RySXkF/020vvi5X+d+FFcU11sT4q2etqRoienjBF1XYucpuJ/u8nZLWV/V7yrza15CvdbEnkaqUKB0oSC9U3J3LLP8tXnXhtlOkxTO2LnGmeM0TH/0BtNj7jPS0HZ+FLjnjt1GqB0SpaePEBEsbEGPUioW6AZUSu8eIURT7K5/Uah6sw+m+/zsfJOdPbuyYP9B4nxmd+YXH2J0xzgqo6xNhP/zy3/y6tZXGzVNzR6Zza5ju0yV4VYoamprqKyp9J9qZecpuJ+1BnaCseT4ZOZdMM/8eR261kZMrBEqGNB41s2MkNaGCWeEOlsSFRO8d05TwTQY5dPtNEJ1HzGqzUlPHyEikpNregBQSs1QSm0EyoFvgD/6vDdJKZUrZa2FEA3ZTbka0n1IvdmH+evnm+/zEx9HTrcu9
Fac2b33yHy0aam7dp6syVM3F7+oN4q6dNHNh0WphGs3Tb0nrj67H7FNzPWgMrpayT45NZnrnc2poXB6+1jsk1QuVl+2ydOpTZRuEQu7Ms8V1Npz82yU75dJRR/EB6+ggRsRwLepRS0UqppcAC4PvAFzRuobwJyAR+6NR5hRBtg531LwAjeo2oW4thZy3HsqREihvM6vSqqeX93d9y+okqsBH8NGyaGueKI0qZ/89twKarnqfgxVFRLOzciRkpPZjSuxczUnrwbOdOjb6OhuN8mSllHaWiuK
Nbw9+W06dehk+voBo8+JHcGe9JtcI5Sga22d2u5so3CQ3Sa1GT83Zm+cSCGzUz7dbBEW6ekjRItxMr3t58AE4C3gFq31fqVUvX95tN
lVLbgCuB3zl4biFEK2cn5QrgxcIXWfTlIjIHZtIjvof1tRxKsTQpkelH69+kd6mt5c1v97LV5eL3yd3YEBcLgcvwN7Js2zJmD5tNcnyyvWDMZ7yXO6Yj87t3Y3lSAtUNriUvPp6nu3Yms7SM7JLDxPregwV4et6wlHX+vnzKq8tJcCWQnpLOxEET7fWtqaowSk97FEdFkZuUSEF8LOUqigRdS3pFJRNLy0iubRCgBHrSb2GNUFpFJXk2So+n9xxueYzwI5R1LcOnwgc51lIjgzSptc1K+XQUpoMe8LvOTggRfk6mt00D9gM/1FrvD7JfIXCGg+c1RSl1sVJKm/h4wGfMvCb2nR/kfKOUUm8ppUqUUmVKqfVKKYf/qyxE22Il5cqXN61s0ReLbJ03Pz5w2tbg6mouqHBbCni81+RtmppblGt7Yb2Xu9rNrLjjLOmU2CjgqRujFIs7JTGzV0/cvvv0DV6uN7mmlulHjrBw3wEWfbefhfsOMP3IUZJr7M2YsOJecB/BrRTzundj3Omn8lS3LuTFx7M5Lpa8+Hie7NaFcaefyoPdu1Lp++UEutaCv5m+EZ5UVmY5PdGlNRM3LpfUo1BUVcBrc4x1LaseNtayfJNvvK56yNj++u1Q5Sd108vhJrW2man4pqIgNglLAQ+cXLsmhGhWTs70nAm8q7VuKim6HOjh4HnN2gcE6k4WDdzo+f+
y/BtjmZ/sGfwdTSk0GXsEIKj8EioFLgReVUkO11tK9TAg/vClXOfk5LNtmvQLXsRP2UqrKm0g9KwgSFAXjXRhvtxy378L6+evnU+Deb6TbBQvAtK5bqzT30OHgT8EtNjk1xTMj41aKWb16UBAfeJw3SHs3oSOnV1WTpCG9YzQTG1TBo6oC1v3V3PkxgrgJpeUs6ZRo6vuFUmSWlpF8KM9IPR
hOlzCQ/veqtgMyPedS3F24yAIibAbJyDTWpD4q/iW+UxOPYdlO0HXQuVpfaOvfMjaWQqRDNzMuipAsz8q3g6YPO/EvZp
EmI1qRCl1JUbQswf4wM8uz2mtXzBzHqVUN+B5jEBqstY617O9F/ARcLdS6g2tt
zCNFmHCyt5JX83az7uoSyymoSY12c378716f1oUdS4CDCN+Xq5cKXef7z5203LTWrqTUgTQVFAcd5Fs
XSDvHVcvPa6pGSfP+8uSEpl9+CjJgZ6CO3mT6stTtW1+925GwNNU0AEci47m8+hoAPK2PM/TX7xUvwqeZ+bIiuySw+yKcQUNugBQirQKN9klhz3XL6lHttjpyRQouPTOsrydbfw8/M3wNVWlzY5gaXkX3gMZs42/mdK9oZ9LevoI0eycDHq2ACOUUklaa79BjVKqJzAMWOvgeZ3gneVZpLXNzoQn3Qp0ApZ7Ax4AzxqnXwK5wN34D66EiBjFFcXkFuVSsK/A0joPd1UND76+hcUbvqGqpv6f0+qiYh5
ytZI/owd3wqcTHRAY+THJ9Mx5iOYQ94ANIrKoO+H+rCeLsL5L3jbKXHKcXSPkOYHugpuJM3qb52rqE4OorlSZ6v2WJaIJxMV9x5dCcLzn+QOKv9fjCq8C3Yf5Ccbl1YluQ/JdCldeM1UGbKZov6nOgfFSjguO1D+Oqt4H11QmV2xrOm2vzfTFPsVqkTQtjmZNDzD+D/gGeUUjdprU/4vqmUiva835HAaWbNTimVgFGAAYyvIVRXe14X+3nvTcANjFVKxWmtgyQ2C2GP3WDFy1Rjzwa9aOrGVtXw0+fXs+7rwK25qmo0/1q/mx0Hy3jx5pFBAx+7aWFWuKJcTOx/DWz6T8AnymndhpBXscPysb1NU9NS0sjbm2d7vO30uFO+x3R/T8EdanLq14kychMDrzuyomB/ATmr7mCu1X4/HnFaM/fQYWYfPsrSpETyzRRSAEk9siqUnkwZs80FHDf8Ozz9bazMeDYqSBuCJtbZCSGc52TQsxC4DrgBuEAp9Y5n+zlKqSeAa4B+wLuAvdXG4TEJSAA2aq0LA+xziVJqGEb63jfACq213/U8wDme108avqG1PqGU+hxIAwYDm0O5cCF8hRKs+B7DVGNP71P4sQuIc528EXnw9S1BAx5f674u4cHXC3lk0tkB92mOvimZAzNJzpgLlz4YsFP7pOgoFiweZ2m2xRXlqmuaOmnQJBZsWmB7fFmVvVSY8poAi/LD1TgUoEOi7TVQ/iwrLWJ2VJT/4MSk5Npaph89xvSjJgdI6pE1dnsyff0hbH/f+RRLK6zMeDo16xyOanNCiCY5Vr1Na10DXIXRp+cUYIbnreHA/8NYy/MskOlACpmTvKltwWZ5fgLcDtwGPAQUKKUWK6XqzU8rpToBnT2ffhPgWN7tpirYKaW2+PsABpgZL9oHb7CypGhJwBtrf40zG7LU2LNBL5kDpW4Wbwj0a+/f4g17OFgaOLUs3H1TTk08leyRnp4Z3k7tU5fBre8Zr56+H95y2lZkDsysm1kLdfz+48EKYgYW8PsXjsahXn1H2V4D5U81sDSpmVOBJPXIGrtB4oFC6ymWTrIz4+mEcFSbE0I0ycmS1Wit3V
2cBpGA1I7wV+hRE0nKG1vi2SUrqUUr0xqqrVAP/ys8s24B5gCJAI9AGmAN8Ck2kcKPn+S3k8wGm9j66T7F21EI2FEqx42e0l420M+mr+nkZreJpSVaN5tWAPxRXFLNy8kBnvzmDKW1OY8e4Mnt38LKndUy0dz6pTEk8JOOvVkJVy2mm90k4GUyGOL64orvseW+VNj2vE7k2qmXHDp5Lg8GOtYCXFw+LwTvjwj8Y6E2EoOwAfPgovZcJzY41X7/fIbpBYbvH3euMiZ38mdmY8QxXOanNCiKCcTG+ro7U+CPwnHMd22A0YVdbe1lrva/im1vrlBpvKgX8qpd4HPgMylVLna63DVphBaz3E33bPbE947whFq+BU48tQeslMHzrddFpbPaqK/+z8M89987HflDyXcqFQYStmUHioEHe1u16KXiBmymm7olwBUwjtjs8tyqXWRiGFKBVVlx5XT9kB6zebXmZubpN6kdb1e+S5v7Z3Dj+cnDky5fDXRl8ZOyW72xozi/xTzrJ5cJv9bZxab2V3xtOOcFSbE0JYElLQo5T6PkbPnZ1a691N7HsGRkrXAU/56EhgJrWtEa31XqXU3zFmga7gZDU638egHQF/TUO8+SbNXrZbtE2hBiteofaSKau0dg2oKuL7PM+hqK8hwD19tbZ4TIvKq8rJyc9hbsZcU/v7ltNeWrSU/H35lopF2Blv9+eSHJ/cuNdNoJtXs0wuvp505f+xIPcqqh1a9+30zJFpJteThFo8JGKZXeT/3UaMRf5WflBW9/dwsshEc6zd6toPht/obLU5IYQttoMepVQykIeRxjXCxJATwL+BDkqpgV
I3bP7QRPwDYcI1BZZuMQRZ7X3t4NWutjSqmjGOt6TgP8FUY4zfO6y8Y5hWjEicaXEHovmcRYa/85ie31Oq6Er437HgeLIlnlb9arKcnxyUwfOr3e9y+YQDfFv
B75s8r92fS8+OPjdYZm5em2Jh8XVypz5MGJjJku3LTPXpaUp61+/BPnvrmhwRoGS3E8VDIlo4F/knJEP5QcuX5GigEu61W1ExcMu7EuwIESFCyRm4CaMfza+11k126vLskw1084xtaT/xvOZqrQOtvwmmq+e14R3JJs
uQ0HKKVigLMwylZvtXFOIRoJNVjxCrWXzHn9upkeo6JLieniKYDYggEPnJz1Cgd3tZt5H89j3OJxPLXxKfL25rH54Gby9ubx5MYnGbd4HA/mPUhljfPFHJJifJYNWrp5DeCcH1m6ecs+/z5jDVOIAY8rysXEK5821kK0pA
SZwqHhKxbC3yN/mzPmM09Pi+5UsCnA1U+o5y7lj+tGTBgmBrsIRop0IJeq4GjgIN170Eswg4AlwbwnlDppRSwI89n1ruzeMZ702Wb1ia+k3Pa5afoddglL1+L5IKOojWLdRgxSstxdwi+4a8i+WvT+9DTLS5m56YLvkoVWPrfOGQvy/f8WM6dVMc6s/FuQpV1p7ke9cwZQ3OwhVlP5M6c2AmyZ1OM9LLRkwznp77ExVjpBGddR0EXAOkIOVs6NrX+oV415N4OFE8JKLZWuSv4ZRzg/+MRkyDG5dA/wvtXZeT/W2GTw18rQFZCOxaomBBVQW8Ngf+lAqrHjbWXX2Tb7yuesjY/vrtUCW3IKL9CSXoGQKs1dp80r2nrPU6z9iW9AOM9UXfAqv87aCU6qGUmq2USmqwPRGjLPd5wD4gt8HQ5zDW8kxQSk3yGdcT+IPn08ec+CKEAAduij0mDZpk+ebUt5dMz6Q4skac1sQIQ3RH5xa5OyEc/YCcuim+qt9VKIvTYb4/F8cqVG16xfJTYu8appVZK5kzfA4ZvTM4O/lsOnXoZGp8mqsL2cPvMD6JiTfSy+4qhEvuh/5j4LR04/WS++H/fQIqGrYshYCFHzQc+ALKD1n6OupsM/65CLXSYZMi4Sm93UX+cZ0D/4zuKjR+hjFx9gIOp/vbJPWCYT9uej9fw6c0HXx7A7vmLljgTWP95MXAf/PedWovjof3H4nomaBAVT3tVrMUIpRCBp0BO/9yHOJkL5uW4i1g8E+tA/7rmAD8BZivlMoH9mIUbTgX6I4xY5XVMDVOa12ilLoZeBVYrJT6AONrHgt0Af6ktf7AyS9GtG+hNr708vaSWVK0xPRxfHvJAMwdP4QdB8u
OSmogKnc7UEp/sBOVVRz13t5v4191uuXlfv5+JUhaoQKmc1XAPlrjhMzitXsYxSqv2kv7m0JrO0jOyS3cT+68f1iwh4+yn5XoeVNUu11XDCZh2Z3R/D67eTe9qZjhQPacRMpbTmqgAWSllzfz+jhrwBxycvmj92ONLFrsyBQ9vN/e6cMRquesz43o+5L2Az4xZLabOSxvrNeuPDV3P/jgXQ5tfKiRYTykzPEYz1OVZ1w39Vs2ahlIrlZOpZsNS8Q0AOsAEYjNGXZxTG7M5jwFlaa793E1
JcCFwDsYxRKuwuj5M01rfbcDX4YQ9ZzZ9UxL+zcMVrxC7UUTFxPNizeP5IaRpwdMdYuJVvRKaunnHvUF7GdjUygV9XxZmS3yavRzcXLht5nmpCbErZzL3J2FrNz9LXNKjpBRUcFQdyUZFRXMKTnCyt3fMvfQYWI15ppSOrFmyRQNG16gYNPfbY0OmkZp5Sn9y5ON/cPJ7toZK+OuzDG/Vitc6WIx8eZSJxvO3gRpZtwinEpjbc7fMT/a/Fo50aJCmenZBpynlIr2pK01SSnlAs4HWqxktda6EhPBmta6FKPwgt3zrAGutDteiKYEexoWTFqvNKafPZ2Fmxf6LbEbSi8aMAKfRyadzV3jBvNqwR7W7jhEWWU1ibEuzu/fnevT+rD06294auNnIX39TgnYzyYETlTUszNbpFD8bvTv6v9cnFz47UQA5XNzllxby/Sjx5h+tIkxGxcZT9b93VA6tmbJvPLKoxBn/Qlz0DRKK4FbgGpyjuo7ynjyb3mchTU33oDj7WzjZ+wv2GuO/jbe1MlInL0xy+lGq83xO+aHnbRgsy0HhAgl6HkbY13LzwGzfxU/x0htWxHCeYVo97xPw6zMAriiXIzvPx6Aq5de3WTagN1eNF49kmKZPWYgs8cMbPSenZS8cLmq31WO91KxXVFv7ydGfn2HRHK7dLL8/dFo3tzxZv0UKrs3
44EUDZuTkLllrn9M2eCQk2msVCkDRKO4FbsEDQCcOnwgc51r63dtbcRFLAYSYtL1KFo9FquH/HGnAqLViIQEIJev4C3A38QSl1SGsdtIqbUuonGAv5S4H/C+G8QkSsg6WVvJK/m3VflzSa3eiR5FzusdW0pyHdh/DYRY/xmzW/CTrOmzaw8+hOFoxdYKkXjRV21g+FQ7e4bvRJ6sOMd2c42lTSdkW9iiOwz2gBVpDSA+L9N8MMpmH/JVs3r4E4UTnL7s1ZoKaU4bjZa0JaRSV5Nn42AdMonQ4EndDca25ac8ARCcLRaDXcv2MNONVoW4hAbAc9ngX7PwUWAy8qpWYB/8Io4eztOOZd+H8DRlqbBn6qtQ6+ylmIVsZdVcODr29h8YZvqKqpv+h8dVExj7+3lawRfZg7PpW4mOiQzmXnadhXh7/iqU+fiqi0geyR2ew6tsvymhWnKBRH3EdYsGlBve1OLJRNS0kjb2+e5XHpFScLPJQHLLscXKNZJjs3
44VTkrlAXyFo9XHBVFblIiBfGxlKsoEnQt6RWVTCwtI7nW3mwNwKSyMhZ07ey3CEMg/oqH1HE6ELSq7IDx+7FzTf1Zlh/cY22Rf6A1N4GO3xrSxlqLcDVadep3zASnGm0LEUgoMz1orZcppcYDLwIZGIGNPwojEJqmtZbUNtGmuKtq+Onz64NWLKuq0fx
W52HCzjxZtHhhT42H0atuJra396ZtIGQpnZ8vZxCbZ+KFpF0zWua1hKlGrP
xpOOMV57K2lsBWRT2tmVh68gbe0RQqKxWqAnGqcpbTC+T9bHcrxfxuXVmelNAoMMmLj+fprp091eE8xRIsSq6pZUJpOUs6mf9aAhUPAZwPBM0yUy3unB9Bt75GyXKra24iqRpdW+dkGquvcMwgBeBUo20hAgmlehsAniCmLzAbeAv4Dqj0fHzn2fYzoJ8EPKItevD1LU2WaPZa93UJD75eGNL57D4Nq7V4E+2vmpiXu6qGX+Vu5oL5/+WP725ldVExG3cfYXVRMY++8xUXzP8vv8r9DHdV8Bon/vq4DO0xlIzeGcwZPof3rnuPFZNWBG1w6VIuy31szLLbVNKbvmeKNu66MxvMPqT5zPpY4TeFykyFqmCcrJzVd5TNcQFS6xocz60Us3r1YEmnxIAzMdVKsbhTEjN79cRtY
GV3bJYdJOmAtq/VU6rKc5KqU1ZLZa3MZ/QMlOow9SU7137By/BSuFtSm2Gq2aEK4ZJD+carQtRCBKaxuPuUSLU0ptSU1NTd2yZUtLX0q7dqDUzaj5qxqltAUTE634OPtS22t8prw1hc0HN9saa1VG7wwWXraw3jYzM1te5/XrFvLMlldxRXHAwgp/2fiXsK0PckW5WJm10vIaHyvFJtIq3Dyz/0C9WYfi6CjG9TnVcgpVk9daduDkgvHKY3BsL5Tt89/QMxyVs0r3w5+HWF8gf9uH8NWbjVOkBl8JCy+qO9687t2MGRitIdj3zvN+1rFS5h46bOtLcStFTrcuLEvyH2A1VemwzoePwqqHrV/AJffbTz16bY61lMcR06xV8gr38UVjV
nZoTyO2bRws0LeWrjU5bHzRk+R9Lb2pghQ4ZQWFhYqLUe4uRxJehppSToiQx/WVXEH9/danncLy4/029VMzNmvDvD1noRO4b2GMqiqxbV2/ar3M38a/0e08e4YeTpPDLpbKcvrR471eyssPuPqrvaHbz8d10TTv9pVqZv4D2yBmfZW4flGwiFa82F77qO/Z9D+cGmx3glD4aSrwOnV3XrB8Vb7QWKWrNy97chrfEpjopiaVIi+V1TKE8eSEKHJGsFMewGgncV2vv5hPt8zf31CIOVJr1mNPPPpLiimHGLx1lutG3noZSIbOEKekJObxOiPTOb1tbQ2h2HbJ8zLcVc81AnNEwbOFDqZvGGbywdY/GGPRwstZeqZZZ3fVDQNLgoFz072vvH+5lNzzBtxTSe3fyspfVFAdP3ajs0bsLpR3bJYdIq3KYCniZTqIIJZ6PFqgrjCfSfUo3ZjB3vWwt4YjtB8dbgKVLFWyG2E7mJgVPaAqlWip/36kFlCBmS3n5DC3duZZHuycLLFjJ96HTzN2JxnaBrX2snDWWNVSjV4iLh+MK/UNNYG3JqHZ9JltKCPYKulROiAQl6hAhBWaW9PjN2x4GxSD7QjX0gUTYrgTVcH/Jq/h5LqXxgFHF4tcD8zJBdTa0PWpm1kpSEFFvHPlF7gg0HNvDkxicZ+5+xPJj3IJU15gO55Phkpg+dzsLLFrLoqkUsjO7D9KPHmpxdiNOaBfsPknWsFFeAWXlXlIuswVk8M+4ZW5XmwsrMuo5AomKMGZ7KY03uqgEqj7E+3l5u/5a42JDW99SzcZExq2WW93t0qMj8mFDXWIVSLS4Sji8C8/Y9uquw8Rqsi7LhtJHmjuPkOj4Lskdmk9bL3IO9kB70iHYppOptQrR3ibH2/oTsjgN7PW6u6ncVb+9823LaQMMSu6HMbNlN57PKG2BMHzr9ZErVp2/C+ldIiGn6BropNbompMpugKVKS3FaM/fQYWYfPsrSYePJj4tztKdQWK2411qqTUIP6HWWkVp35pXw14tMDfOGKhXKZoqa1hTEx5EzeCRzOw4KXKnMDKu9Tax+j5IHw41LQltjFe5qcS1VjU6cFKjv0eg74O1sIzi3Wo2vGZip6ml6rZwQDUjQI0QIzuvXjdVF1sspn9+/e0jntdLjJq1XGvMumEdsdKylQMlf2kBLzGz5Kq4oJrcol4J9BcFv/AOUyk3r3Im8bl0cuZZGvYys9CKx0TA0mWimX/JHpreWNQ+l+43vvxUVR2DSQuP79eGjlgMPu2W+vemDy6oPMvuyf5J86VzIexrW/Nne8bavMhf02PkelXxtzH6FckMa7mpxLVGNTpjjnQkac1/41/HZ5J21nz1sdsDiNRH7oEdENAl6hAjB9el9eOK/RZart12f1iek89p5GmY1UPKXNtASM1tgFASYv34+y7cv
S1NmomWlsbcDGvnaaSwSzbtozZQ24h+YM/WOtF0tzd7ltCKOs6LrzHVopUWkUlefHxlsd51evuHhtCGdxdH8Prtzf9tDzU75Fddnu6BCob3tzHF6ELNBMUQerN2gvhAFnTI0QIeibFkTXiNEtjskY03bjTDDNrWOZmzK2
je72D/Y+pDz+nWzda2hzGx5K7MtKVoSMD3P20x05sqZuN+6J2C6kLepJFDXHycU1bXVLF3yI3u9SK7MMfLmzWih/PqQhLquw0aq06SysoBrn8zK35fvuQ6b1w+ANtd/pqXWvtjp6RIVY8wCRMLxhRDCBpnpESJEc8cPYcfBctN9a+aOT3X0/FaehoWaNtASM1vz1883XYq6YH8BOaXlBCvanF1ymF0xLgrinclXz6/ch6nnkLs+MnLpvb1IvJWWIji/PiShruuwkerkDWqtlPluqK67uxPrSxr+zBtqqbUv4Z5pbA8zmUKIVsd20KOUujCUE2utPwxlvBCRIi4mmhdvHsmDrxeyeIP/6mYx0YqsEX2YOz7VkUadobKbNuCd2bLSpyeUma3iimKWb19uacyyxI7MLjkcsDKatyJasKaSVpRbqYy3cZGRS++9uWsF+fV+mVm/FOq6DpspUqEGtXVl2p1aX9LwZ+6rJde+XJkDh7abK6JgZ6Yx3McPhZX1d0KINiOUmZ4P8FQKtanl7/yEcEhcTDSPTDqbu8YN5tWCPazdcYiyymoSY12c378716c5k9IWCZpzZiu3KNdSxTkw+q4sTUpk+tHAldp8K6JNPaUXe2Ls97SwtHg+0HqMVpBfDwQsEAE0Xr8U6roOG8Ue4GRQOy2lJ1virP/N1ZVpt3v9DQVbg9OSa1/CPdNo5vgqChJToLoC/vWj8AceVn5/W9vMqhCiSU
zH9WSr1ACEGP1vomu2MFKKW2pKampm7ZsqWlL0W0Q+6qmmaZ2Zrx7gzy9uZZHpdRUcHCfeYaYC7s3ImnQqjoNqfkSNAAq5H+Y4zmn62NlW7vZ4yGzKfhqRHWgpaGHeBfm2MqRcpfJltxdBRj+5xKjYWZvHrd3Uv3w5+H2C9d7SvQz9zOORp+j5xQdiC8M42+x688Bse+g7L94O+BQbhSOq3+/t642AjchBDNbsiQIRQWFhZqrYc4eVzbMz1a62kOXocQohVprpmtuvUVVsdZSDmbVFbG0127UGMny01rLio
m1Ma+1FYqWfzK6P4KM/hb6uw2SKlL+4JrmmlkyL63vqlWm3sy4lkEA/80hZ+xLumUbv8TNmG4FH6d7A+3oLfxRvczbwsPr7G2wtlhCiVZLqbUII23okxTJ7zED+cct5LP3ZKP5xy3nMHjPQsVS+uvUVVsdZSDlLrqml31GbN5FK8b+EjtbGtMZeJHb6yWxcBD+4x3yFui5nGPv78qZIjZiGDlAN7ISO5qDu5Pe97JLDpFW4TQU8fsu0W6mwF0ywn3l
+Lny07g4QS7v79lB5w5vxAiIkjQI4SIWGkpa
GpVdUmt73hI5m976p6Bp7T5Tz4y0GeK2xF4ndfjKfvVoXtDRZwvjILnhyuNHfpsp9crun2IO6q5B3UqbzYc3ZfFI7kA9rzuYPVddzQeVf+KL2DL+H9K7vyTpWGrCUtUtrsmJP4ZmLH29cpt0n6LJcgtlXsJ+5mXNExRjv37ik9a41acnAI5R+SEKINsPxktVKqY7AGGAQkAT4e8SmtdYPOX1uIUTbMmnQJBZsWmCpmIELxcTSplPIvBlPi2su4pBOpmNld6I7fmP5Gi1Vb2utvUhC6Sdz4T1GmtDou+HFa4zgJpBgqU2JPbnolhx++vz6RkU01tV+nwujP/N7SN+iFUuTEsmPj6VcRZGga0mvqGRiaRnJtXvgXz/2n07lW2Fv7dPw0eNYWs5q5mfeWqv4WdFSjVgh9N9fIUSb4GjQo5SaBvwZ8M01UNT/F8L7uQQ9QoigkuOTmTBgAkuKlpgekzkwk+TaDabWgayt/T4PVhs3pLrW3kyPpept
UXiRP9ZF
MXjA4yvAmopA5eFf
mY211L6KBqAh4yubaW6UePMf2otXPWSewJY+fB8ZLwrcGxu7amNZRgbsnAo6X6IQkhIopjQY9SaizwN+Ao8HuM2Z4M4DZgADARY
nL8AGp84rhGjbskdms+vYLlMNStN6pZF9/n0wsjZoqdwTOprFNRfxYPVUKukAQM3xfrgSiyxfX3psCmCiUpzZ9RiReAMbaj8Zu6lNfv
+BbRWPnB+5z9+XzOOLGNKM+jNY3/9IJQzllPJPWfaU0lmFsy8GjJfkhCiIjh5JqeuzH+vRmjtb4fKALQWj+rtc4GhgCPAzcjQY8QwqQ4VxwLxi4ga3AWrij/z2lcUS6yBmfxzLhnjHUZ3nShuwrhkvuh/xj2JZ1dbx3Ir6tvrQt4AKqOpKO1tfLarigXEyf/25n1GFUVRonmP6XCqoeNm9Zv8o3XVQ8Z2xuud2kufUfZHOdZy+L0morjJfR4YRQ/3vBDzq7cSCddigtjliekVrNm1nGYWuej4JRzIXNB+IINbwnmT14M/L31pgu+PNnYvyW1ZOAR6u+vEKJNsN2np9GBlCoGvtRaj/Z8/ndgqva5i1BKRQHbgI1a68mOnLidkj49oj0qrihmadFS8vflU15dToIrgfSUdCYOmniy1HAAB0rdjJq/ym9fIa/YlFw6dF1vtsIxWYOzmJsx1/gklF4nkd5DJNR+Mi9l2mvC6a+/zfESeOIco99LOFjpo3R4N/xnKnz3KX7X+agoOPs6GP+k88GPyR5GdUZMa9kSzB8+agTzVl1yf+jpbZHSD0kIYUq4+vQ4OdOTCOz2+bwSQCmV5N2gta4F1gE/cPC8Qoh2oLiimNyiXFsBD0DPpDiyRpwWdJ/K/eOpLu9nKuBpVOLYux5j6jK49T3j9cJ7zN00tVQpX7O8/WRMqLv1913L4mRq098uC1/AE+ic/lRVwLJZ8N1GAhY20LWw+RV4YigcP+zYJYZcCa3sgBGEvJQJz401Xj/8Y3hLNA+far0CnlOFPyz8/tZprevvhBABOVnIYB/Qzedz
exwdRPZ+sGSJtjIdo4b5BSsK/AVpDi5a52M3/9fJZvX96oilve3jye3vQ0mQMzyR6Z3bjkcANzxw9hx8HyRtW/6ugYKvbcTGyv1+nQZQP4WRjvinKZPp8pDq53scXsGiKzjUKBHQnDOGXs76mb27CbonT0WyOdzztLsu9zOGR93ZUlZq/VSqBath+ePh9u/9SZGTq76YIFz8Ox71pmDVBLN2KNpLVYQogW4WR629vAIK31AM/n44B3gP8AP9Jaa6XUBcD/gE1aa3sNOAQg6W0icgULUsBa0OCudjPrvVmmixgsGLuAOFfwmzV3VU2j6l9eKrqU2G4F9O71HcmdqimvNp76J3ZIpEuHLraCtia1VNrP4d3w6lTY+yl+ZyqiYhrdALuPl/HRX27lwvJ36KAaV607oaNYXHMxD1ZPZVi/FF68eSRxMdH2v0aon8730gTY8YG945hl5vtqJ10KYOgPYdJC+9fmZTddMK4LuI80vV+4Uigtp3E63JeoqiJogRN/v/NCiObXGtLb3gT6KaVGej7/L7AZyAK+VUptAN73nPNxB88rhIgQ3iBlSdGSgL11qmurWbx1MTNXzsRdHXxR/vz1800FPAAF+wvIyW/66ay3+tfH2Zfyi8vP5AeDkjnn9I70PfMtOg2eT0zyOxTXfMaXh79gT+ke9pTuoehwEacmncrUIVOdDXggtFK+dlRVwLLZRsrV3iCpWX4Wwf/urS84cMyNClAuwHf7uq9LePD1QuMTO6lNXr7pfHs32TuGWWbTqezMtAB89h9nUsjspguaCXggfCmULd2I1U+BE05LN14vud/YPv4JCXiEaKOcDHpeAq4E9kPd+p2rgZVAT2A4cBz4jdb6ZQfPK4SIEE4GKcUVxSzfvtzS+ZdtW0ZxRbGpfXskxTI7vRPPDlhFt4RfcijqQ2rx3+fFSqBmWXOW8vU+af/0ZUw32PTcAB8oOcw1m/8fP3a9T0yAfjgxqoYfu1bxYoccYjnB4g17OFhaaW9NhS/vepSaE/aPYYbZdCq7gaqu
o6nBnNUUrZdw2QkyIh8Ahl/V1b0xLru4RoIY6t6dFaH8VIZ/Pd9i1whVKqI9AZOKC1Dtw9TgjRatkNUmYPm+139iS3KDfgbFEg1bXVLC1ayvSh04Pv6NPfZH7XJAo6JWKmZJs3UKur2BaIlV47zVnK18o6FF8bF1Gyez/nRX3R5LdJazg/6gvmul7i19W38mrBHmaPGdhoTUVxVBS5SYkUxMdSrqJI0LWkV1QysbSM5NoGqXPeUtLRHYBy69dvhpV1HKH0jnGi2WbfUfbS26zwfs9DvdZA7DZiFc5oTT2ehHCIYzM9Sqk/KaXu9/ee1vq41nqvBDxCtF2hBCn+FOwzN2PUUP6+/OA7+PQ3KVY1LE9KMLabKdlGE7NJdnrtNFcPETsFE7xqqxh00Him1dS3yft+VvT/SOYoa3ccMjZ4UpvcSacwr3s3xp1+Kk9160JefDyb42LJi4/nyW5dGHf6qTzYvSuVDc+z8yPofY696086xdl0qlBmWpxothlKuqAVdlMoRWR
T2ehHCIk+ltPweGOng8IUQr4nSQUl5t74l+k+N8ZjtyExOpNhnseAUM1OzeSJi8gS2OimJh507MSOnBlFNSmFH+Oc9uftZ0Op/tdSge0TQuXBBMB1XD9dHvU1Z5MhB2K8WsbvEs6RT4+16tFIs7JTGzV0/cvvucKIPLfmfr2rlxibPpVHYDVXAmNS2pl1EUIdycCNBE5In0EvlChImTJau/wdkgSgjRhIOllbySv5t1X5dQVllNYqyL8/t35/q0PvRIcqCcsgVOBykJrgRbxws6rsFsR0G8ve9R
78xil0dm4kxj/RZClft1LM79aV5UkJ9QOFAxvIO7DBfMluu+tQQnB+1Bd8Fnvyn5n56+dTEFXVdCqh1hTEx5HTrQtzD3n623RIhO4DILaTtT49yYOhV6rx/51Kpxo+Fd7/vbFGxyqrM3T+VFUYqYLh1hxrh0TzaukS+UK0ICeDnmXAVKVUkta61MHjCtGinOo34ySj7PIWFm/4plHZ5dVFxTz+3layRvRh7vhUo2RwMwg1SGn4fT5cYa+ZY3pKeuA3G8x2lCt7z2kaBWqh3kgE6CHiVopbU3qyKS5wMOMtsrDz6M7gJbtb4Kl9oqrg/P7dgQZrvkzmyC1LSmT24aPGGp8+5xkzaVYCnthOcMtKO5ceXFIvOCsLPnvV2jinmm2uuBf25IV+nKY4EaCJyGK3x1M413cJ0UycDHrmAhcDbyml5mitNzp4bCGanZNNMR29rqoafvr8+sANNoGqGs2/1u9mx8Gyk71SwiwtJY28vdZvxIb3HM68j+cF7OtjhSvKxcRBEwPv0GC2I8HOk3r8BHih3kh4S/n69BBxK8V1p6Sws4O5tRtNFllogaf2x4nn+rQ+gM01X0qxNCmR6aUVcPhra0UY4jrD7Zshvoulc5p27ZPw9f+MxqNmOdFsM5S1WVY4FaC1RVYKlUSaUErkS9AjWjkn09GWA5XAKKBAKfWNUupjpdQqPx
dfC8QjjO6X4zTnrw9S1BAx5f9XqlhNmkQZNwRVl7juKKcrHm2zVBv89WZA7MDD771mC2I62i0tZ5Gs0mOdFrx6eU
viX3Fr34GmAx6voEUWQlmHYlP5KRl1aZa213zFx8JZE+HzXGsDTxwPb4nrmHj42VpITDG3v5XqcMGEuDbLNCcCNLNaS9lkO4VKIk1zlsgXIsI4GfRcDJzn+f8KOAU437Pd34cQESscTTGdcKDUzeIN31gaU9crJcyS45OZMGCCpTF9EvuwqdiZhpNpvdLIHtnEgtsGsx2TyspwaZP9ajyiiObC3lfX3+jkjURiT+Z3cLMJ6z+zYNXwQqr4ZbHYA0A10Vz0w7vqPre95iuuM3Ttb38mLZw6doPbPzWKCgRKlXS62WZzrM1yKkBrSmsKItpKxbPmLJEvRIRxMujpZ+Gjv4PnFcJR4W6KGYpX8/c0WsPTlKoazasFe8J0RfVlj8wmrVeaqX3P6XEOu0t3h3xOV5SLrMFZPDPumabTDBvMdiTX1DKh1HMz3kTw433bfWQo1zz+K
K/Qx3lacKv4M3EnZ+/3wFLNltt0FolzOa/N74E9WhI3FLflL31D5B2Qu4EnoPhz3
I1tlpLLMfEwaSHc/VXzNNsM5xN3pwO0YFpbENFWKp41V4l8ISKQk81Jdzl1LCFaUlibYobIbFpbQ2t3HDIaRIZZnCuOBWMXkJOfw7Jty/x+H11RLjIHZtIjvgebDlqf5emT1IeucV3tFZQYPhU+yKl3k5VdcphdMS4K4oPf5HknO2I6b6JKx/Cv/PEn10zZbRbp50bCzu+fr6AzKpYahGojxenIHjhi/T/vUSdKjaf2ADveJ61LV/K6Jlk+Tnrv82DPK5bHAc2bktNczTbD9cS9/xgjeGuulDa71Q5bQluqeObnv4FNkvVdoo1wsjnpA0qpa03sN14p9YBT5xXCaWFriukA354nzTHOjjhXHHMz5rIyayVzhs8ho3cGQ3sMJaN3BnOGz2Fl1krmZszl0wOf2jr+aYmn/f/27jxOiurc
jnmQWGZZBFQCMgKKKCGgmbS1xwiZqERJCQq8bluuTmF29irokJuVnQLFdNzOK9xqwaiSZuuCTERBO3xJXNBQWjILsri8CADAzD+f1xqrFpeqmqru7p6fm+X696NVNVp6v6dA1TT51znsPvP/p7fvWRX3HxYReHDnjWbFnDr5b+kc/uP5yz9+7PZ/fqy6/36MEmM37+9momb2yiNkSLhtkOOvWaTZeBNzFr2dt+zFScrmM5biTiXn8pebPopSYI/dA5XLHnnnkmCB3Alcd/lq0f/zG0vFfU+aRMatoQuSvhzsQU6pLzvlKMzaqpL2/AEzeIaKsxPsUkKqk0cVp8yzm+S6SEkszedgVwM/CnAvt9ArgA+E6CxxZJTMkmxUxA987xfmXjlivGnl325OLDLs7Z+lWues6ahS9IAf10ly7c0GsPTm/axNR177LFjPsbuxecR8Y5qOu2lM79ZzJj3hlcdvIw+uaZayerHDcSxV5HeVN2E0wQ2mkzcxu75txnu8GM5X9lWfNqfl7flSQ6OqW6Et7dI3wgsjMxRYItaWVTqgxfcZ7UF3zPMt/Utre0ydWW8SxHivysyjW+S6QM2mIy0VqIOLW3SBmsbtrK9Y8sYunb8VpF4s5TE8W4Ib1jlUvNlVJJSjL5aIZQWfjMmNGjkQv79+PB7sF7Fxi4v7OrW895bGejHzN12jX+BiGMPDcSxVxHhuVP2U2MJB2NyQXMU9e9y+gt4Qal75KYIsGWtJIr9eD8uGOzcmmLm9oksh2WU7VlPEulyB91fu7fq3KO7xIpk7YIekYA8WYdFCmB5pZWvn7PfI66+mGu/du
FkzINb7FHrCnoQpYwZSXxstk1Z9re2cK6WSjN4rXMKDTFHqOcoN/gtdGtgeMUuZWSv1PefyzJK1id1IxK2XMGIl6di0lDV1ycxD1eDczq6EdTn+/GRNTFHOLjnFpE8u1+D8KAF2Lm15U9vegohq7F6ZliK/LAk4RCpAUY/wzOymjFUfzrIu/VgHAqOB+4o5rkhSsk302bJ+DJ36PoxZa+j3KTgpZkL6NTYwedQAbpsdPhvb5FEDd86VUkkmHTCJn7/w80iD9qPUc7FZ0MKq7
k/TFTqRuJ8d/wXXGWPRG5a1OceklxuLwJNWIl6XDbufeAI7j45X9EPp9sGpxj2tp3uaTHIdw78pPMeWsOm7dvLpyYotRdclq2+MH1z/9h94BlyaPw2NU+kDrmKzD/9uzd1h75XnkG52eZzHZ3Bt32hD5Doa4Btm+DHdsqYyLN9hZEtMfulWGVKwGHSAUott/C+Wn/dsDQYMlnPnB5kceNxcweA47Ls8tpzrkHspQ7H/g8MBzYBjwDfM8591SeYx0NfAM/V1EnYCFwvXOuAkc2dlzZJvp0rY20rB9Fp16zCw3t2KngpJgJmjZhBEtWbw6VyW3ckN5MmzC8DGcVXWpen7sX3R26TJR6LjYLWlhWs5XunTL+Ky3iRiJOvaSb89acnEFP7CQdPftx8b4fDn9DH8KeLc15x3ztJsyNfk29D0xOvSbaE+pUC02+z5dqoZk3Hf/nLs2SR+HRq4jcc7uYDF8JBNhtpr0FEcp4JlIVig16xgevBjwCPADkery2DXijQlJb3w1kayd/PXOFmf0UuBTYAvwNaABOBj5iZpOdc/dlKXMGcAe+++A/gTXAicB0MzvMOadHKhUg30SfW9+eQE2n1dR1W1rwfUJNipmghvpapl8wlitnLmTGvOzz9tTXGpNHDWTahOE01NeW7dyimjp2Kss3Lg/VBS1qPRebBS0st6Nz4mOmpo6dygPLHmBzS/SkBvkSIWzeuj7W+by4dgG/HnkOE3sPYs8X7kpmEH2cp/alutGPkj45M+DZuTpGgJ3E4Pz2+KS+vQURqe6VCSQqEZG2U1TQ45zb2d/BzKYDj6evq2Bfcc4tK7STmZ2ED3jWAkc65xYF648EHgN+a2aPOefWp5XpDdyET9hwhnPunmB9f+AJ4Mtm9mfn3GNJfiCJLu9En66eLSsvoHP/mdT3nJe1q1tqvpmpY6cWnhQzYQ31tVw16VAuO3kYd85dyTNL1rJp63a6d67jiP36MGV0ZXZpyxRlXp+o9VyObHoArnm/xMdMNdQ1cEifQ5j1VvRJOZdvWM7Zfzl71+5idd3gr1+j2xvPQ5fo18Wmlk387ws/54aaOk4
iKm7uhF5xVP+4Bj8xp4t/DDgd0U89Q+yRv9OOmTk1SpGb5KqT0GEcp4JtLuJTk56b8n9V4V5LLg9XupgAfAOfe0mf0C+CJwIfCjtDIXAT2AP6YCnqDM22b2VeAe4Mv4oEnaUMHuYa6erW9NYtvqk6nvOZfarkuwmq30bOjOv486KdqkmCXSt7Ezl4wfWpaJR0slNa/PJYdfwr2L7g0/xqOAcmTTc66Wj+57ekkCzLF7j40V9GzYtoH5q+cD8PSbT3PDCzdwemsDU5cvZHSPHjwdI+hJ2b5jOzOW3s+y/qP5+Vm301DX4IOGn4xoP0/tM8VJn5ykSs3wVWrtLYgoZfdKESmLxIIeMxsJnAPc5pzLOkujmY0F/g34nXPu+aSOXQpm1gU4IfhxRpZdZuCDngnsGvR8LE+Z+4Fm4CQza3DOxcxZKkkIO2Gna21k29rxsNb35jxwUE8uPqwEEwR2cIXm9Ylq9F6jefrNp+MVdvhOu7k2B2O9erUexf988sh4xyigmIQG6
v2M4M28Sy/v343po1/LzXHpGz1GWa+/ZcrplzDdOOnNY+n9qni5s+OSmVnOGrlNpjENGex1GJSKKTk34BOAu4Ks8+S/EJARqBZO5s4rnQzPrgR52+CtznnFuRsc+BQGdgtXMu28CPZ4PXwzLWfzBj+07OuW1m9hI+g90wfFIHaSPtaaLP9mx101bumLOCWUvXlbULXpygodZqOWTPQ3hh9Qt59zOD3rUH86dPX1uyMVPFJjTYhXPM7dLA
Y4/0JQsNm6cjhvsX3ccnhl/hWuPb21D5dW7e0tIcMX6XSXoOI9jiOSkQSDXqOAZ51zq3OtYNz
WZPUv+DGrl8M2Mn681s+86576btm5Q8Jp1pLtz
OZrQd6mVmjc67JzHoAe+QrF6wfDexLiKDHzBbk2LR/obKS37ghvXl80ZrI5Spxos9K1NzSypUzFzBj3qrdxk49vmgNP33o1ZImW4gTNEw8YCJfG/O1vGOMaqjlo4M/wRUf/kbJx3JFSfSQVxDc3NfYnT+vfIPl9XXM7VLck/PtO7a/nx479dR+5qXw4l3gsmQxq7Sn9ilt2dJSSd382pKCCBEpgyQnJ90HWBZiv+XABxI8bhT/xHfB2x/oim/N+QawHfiOmV2atm/qL+F7ed4vNVK6MaNMvnKZZaSNVNNEn5UmNf/R
NzJ4toaXXcNnsF5900m+aW8HMiRTF17FRG9w832WcqO1xqjNHfJ/+dL478IqP6jaNfp2E07hhO722f5ODtP2DAjnPZmO9/hoSkEj1MHjaZuprin1FtN+Ouxu6MaW6m3
tvrWnCHPeCnoyp+a4eeme7AGP1cAhkyov4AGfPrmtVFI3PxGRKpdkS89WoGeI/XoApbnDKcA59+2MVa8C/2Nmc4EHgSvM7FfOuZjTZCfPOTci2/qgBagyJ2BpJ6ppos+wcnU1O/Ggfjz08tuJdUHLNv9RLrOWruPKmQu5atKhkY9TSDHZ4
X9WLJ4nE8OW+fXQK35bTwzKJXSt5Slf4ZsiV6WL5hORu2bYj8fjf17IErckxPyubtm8PNceN2wPw7YMPrvkWovksix09EnPTJSei5L6xbCr85qfK7c4mIVAFzRT7p2/lGZk/gx7cMds5lvdsJ0jkvB15yzpVm9G9MZjYH3+1svHPuMTP7BPBH4Dnn3IdylHkXH+j1SOvelroL2cM5tzFLmXuB04FPOOdmFnG+C4YPHz58wYJcvd8kjFSLRNiJPqdfMLai573JJV9Xs3zizPfzTlMzR1/9SOTjPDX1xJIGlGu2rAmdHa49XBdn/+XsnVna2sqRex/Jr5oboiUxGHW+H8dRSf70xWifoaAaqKmBrOPJzHc3bE9dAEVEymjEiBEsXLhwYa4H/3El2dJzK3ADMMPMzs0c/G9m+wDT8d3Kfp/gcZOyCB/07B38nEpsMCDbzmbWDR/wvOucawJwzm00sw34cT0DgIVZiqberxImae3wqmmiz0ypVp2nXlvL/FXr2bQ1egNrqgvaktWbQt/Y553/KM9x7py7sqSpt6Nkh6uUlqp8ypGSu5AxvQ6Gv34/WqHnfu8HrpeqRWPTOz6AWfZk+EHxURIxhDHq3N0H59d1gfXL/ZLrYeOOFph3M6xZXHktYiIi7VySQc9vgDOB44FXzewB4LVg2/7AKUAX4EngFwkeNym9gtfUmJtX8F32+prZPs651zP2T7X+ZD5qfQE4Nti+S9BjZvXAIfi01a8mdN5SpGqZ6DMlbqtOPlFu7MMGC5meWbK2IuYbeqepmRnzcuUhyW7GvJVcdvKwsl4nRaXkTkBdTR0TNzVF7xa2o8UHA0kPWk+NK3r+D7uf05JH4bGrc7eihEmfjOFzmReQyk5X3xAkKXA+AHv7JdicM8/PrpY/4c+l0lrERETasSQnJ91uZqcB/wuch+/Cla4V+C1wqXOuuIknEmZmffHZ5yBINe2c22JmjwCnAZ8CfppRbHLwmtlF7X580DMZ3/qV7uNAA/BnzdFTeaphos8o3bKiCntjH3b+o6TKJa1SW6oyJTWPT1ynDz2dPRftlpk/nGVPJBv0hBlXVKgVpVD65EOnwBM/CjenDM53mcsWgIVV6hYxEZEOJsnsbTjn3nPOXYRP93w2MDVYzgYGOecudM61yaQIZnaUmZ1uZrUZ6wcD9wLdgD9ldMv7cfD6TTM7IK3MkcB/AOuBGzMO9RtgI/BJM5uUVqYf8IPgxx8hUgJRumVFlbqxL6S9z39UTEtVOaVScreFVKa72HPcJD03zl+/Fr5rWqoVJZdU+uRz74OLHvKvx34Feg3yQdFlC+GEb8F+42HAGP96wrf8+gnXAc4HYM9OLy45QqpFTEREElGSuwzn3JvAbaV47yIMw7c0vRXMFbQeP1fOKHzrywIyJkx1zj1kZtcBlwLPm9nfgU7Ayfi+Dv/unFufUWadmV0A3Ikf3/QYsBY4CT8G6MfOucdK8gmlQ4vTLSuqMF3QDvlAj1jzHx26zx6FdyqD9tRSldg8PiHtluku7hw3UcoVGqPT9LZvUYmimFaUQnPKRAnACkm6RUxEpAMr2aPVoGVkT2Ctc64Sxq/MAn4OjAPG4MfwbAaeB+4Cfp4tVbVz7ktm9jzwn/hgZxvwEPBd59xT2Q7knLvbzI7FT4J6BD5QWghc75xLMkWQyE5xumVFFebGvrRnUHrlaKnKlTo86vixMCm5DcPF+FYGNg5kQPcB+TPdDT7aj5eJavCHC+8TdoxO970qZ1xRnAAsn6RbxEREOrBEgx4z6wxMAz7L+4kBpgMXBNs/A1wGXOCcez7JYxfinHsZ+HzMsjcDN0cs8yR+PJBIWZSqW1u6MDf2C97YLVN7KC++Hn3OmVIYN6R3rJaqI
U3CffEkmHl+0JtbcP7nm8UkFKptbNnPjS5m9cAubOHRi4Ux3cea4qakPBvjnEWWMTkPP8MdOV4pWlOd+l+x8P3Fb0kREZDeJBT1m1gV4BBgLvA38BfhYxm6P4IOgKfgWFpEOI6mn+7mUo3tVmBv79tQ9LJspYwZy3cOLIs8zNGX0wLz7pCeZ2JMNfLr2UcbVvEx328Im14VndhzMna3juW22i5QiPCVXSu41W9YwfeH0SAkP6mrqmHjAxMI7NvaHw8+KNsfNyLMLdyuL0kWseX34Y6crRSvKsieTfb8wLWIiIhJKki09X8V3HbsR+IJzrtnMdpl9zTn3hpktxI9v+e8Ejy1SsQo93
2wVfo3a0TB+7VyNFD94wdBJU6EUCYG/tizmPpms387NHFbZ4ivF9jA5NHDeC22YWTNqRMHlX4nK+cuYDnl77F/9RNZ3LtP+lku86bdGzti3yp7m5mtB7HlUvPTWzun1TCg7sX3R26zOlDT99twtacosxxk0rnnE/SXcRyKUUrSpKBVJgWMRERCS3J7G2fxk/o+f8KpGN+BSh85yRSBVJP92+bnXu8jQPWbt7GU6+t5YcPvsJRVz/M1+95keaWaJOJjhvSO4Ezzi3MjX0x57H+vZaiPn+Spk0YEfpzjBvSm2kThufd552mZmbOW8L0TtdwVt2juwU8KZ2slbPqHmF6p2uYOe81VjdtjXzu2UwdO5XR/UeH2ndnZrawUnPcjDrf36hnU1Pvt3/m7t3nyMmUdBexXErRipJkIBWmRUxEREJLMugZAswNMQfPNt4f7yNS1eKkkG5pddw2ewXn3TQ70o3/lDEDqa+1qKcYSpgb+6TOI9fnX920lesfWcQ5N85i4g1Pcs6Ns/jZo4sTCwzSNdTXMv2CsUwcuQ81OT5Kfa1x5thBobqh3TlnJf9tN3NEzcu4Ar3mnIMjal7mv216qBThYaQSHkweNpm6muwtcXU1dUweNplfnPwLn5ktitQcN4XSORcKeCD5LmLZlKoVZfDRybxPmBYxERGJJMn+MFsIF8wMAd5N8LgiFanYFNKzlq6L1MUpTresQuprLfLA+n6NDXzs0L257/k3ijp26vNPmzA88cH/haS6JP55/hvsyBKk1Bh87LAPhD7mvxYv5se1/wTACsSDqe2Ta
Bfy1aDAlNeFoo4cFumdniKJTOOYxyZCwrVStKnMQO6dInOA0TIIqISGhJBj3PA6PNrK9zbnW2HcxsCDAS+FuCxxWpSEmkkJ4xbyWXnTws9BiXaRNGsGT15qIyuRnQv0cDZ44dyFnj9o01vmbfPl1jHz/dXXNX8MpbG3l2xfqc+6RahuIM/s8mPeFALjsc3Pfc67y5fkuoYx654S85u7Tl0slaOXLDX4BTI5UrJFfCg4oRt4tYQ89wSQ1K2YoSJ7FDt77Q/5Bd5x4SEZHEJdm97ddAI3Cbme32uNDMegI3AfXArxI8rkhFSiKFdEuri9TFKdUt68yxg3J2MSvU8cwBb21s5qnX1tLYEO+5SL4gJYrtO8K/V6plqFhRuiSGPeZh21+KdS4f3P5irHLtWtwuYuM+l9y4omKcdo0PrMLY98PwpZfg3Pt865gCHhGRkkks6HHO3QbcDpwALDGzB4JNR5vZH4FlwHHALc65Pyd1XJFKlVQK5meWrI20f0N9LVdNOpSnpp7I5accyDEH7MnIQT055oA9OWzAHqGnqSwmiGir9NMz5q0saoxPnC6JYY7Zt1O87k71re+1aUKHNjHy3NyBSy419TDmwuTGFRUj6cQOIiKSiKRz3J4NPAdcDnwkWHdAsGwAvgFcnfAxRSpSUimk4wYQfRs7c8n4oVwSjAl5p6mZo69+JNJ7RO1el1Lq9Nm5pFrGLok5DiZOl8Qwx+zduzc0RT+fd7bWM+2m2Yl02yupTe/4Ll3LnvRjcjp1j99dq9i5f5IYV1SsVGKH8d+AZ3/nJ0Ittl5ERKQoSXZvw3k/BPbGz9nzaeBM4Bigv3PuKucK5S4SqQ5JpZBOKoAo5oY+qlKnz84nastYurhdEgsds9P+x8R73x0HJ9ZtryRatsCfvgg/Hg6PfA+WPAqr5vjXR77r18+8FFryzWKQRdQuYpWa6SwVgJ17H1z0kLqxiYi0oUSDnhTnXKtzbo5z7i7n3B3OuSedc9tKcSyRSpVUCukj9uuTwNmU7oY+m1Kmzy6kmK51ccsWLDfyXFzELlvbXC13to4Hiu+2VxItW+DWyb5FJle2sh0tMO9muPUMv39Y6iImIiIJK0nQY2adzGycmU0MlnFm1nZTrIu0gVQK6WLU1xpTRiczl2/JbuizSOKzx1VMy1jcsgXLNfbHDj8LoOCYqlRb+IzW41jDHkD8FreS+uvXYPkT4fZd/gQ8EGHCU0h27h8REenwEu14b2bdge8AFwKZeUc3mdlNwLedczF6t4u0P8WmkJ48amCslNHZlOyGPock0mfHUUzL2LghvXl80ZrSHPO0a2Dta1iBQMHMd2u7cvuuk2c+s2Rt7LFKiWt6G57/Q7Qyz/3ej3GJ2rWrEsbotGdJjrcSEWnHEmvpMbM9gMeBS/EBzwvAH4Pl+WDdF4Engn1F2q3VTVu5/pFFnHPjLCbe8CTn3DiLnz26eLcuSGFSSOcybkhvpk0Yntg5xx1nEzeIKOazA4wc2JO6mmjlim0Zi9MtL/Qxgy5bDzacxjaXPSnBNlfLH7afwHnbvsZWOu2yra0y4mX13O+iT8C5o8UP6pfyKNV4KxGRdirJlp7vAB8EHgG+4Jx7OX2jmR0E/B8+pfV38MGRSLvS3NLKlTMXMGPeqt2SAjy+aA0/fehVJo8ayLQJw3dm20qlkL7s5GHcOXclTy5ewytvN7Fu07asXZ3qa22394hiddNW7pizgllL17Fp63a6d67jiP36cOLB
nu4UWRkhkUG0RkfvZnlqxlY3MLb2/YyjtNzezIcirpn
KmQu4bXb4bl3FtoyluuWV7Jj1Xbi173/xjUWfYErtoxxR8zLdbQubXBee2XEwd7aO39mlLVNbZcTLatmTMcs9oRabckiNt8rXqpgab7VmsR8/Vd+lbKcnItIWLKlkama2Ct9yNNQ5916OfboArwE7nHNt0+G/SpjZguHDhw9fsGBBW59Kh9Hc0sp5N80O1V1r3JDeBdMMr27aujMQSA9OpoyOd+OeLyADH0wM6t2V11ZvDv2eZ44dxFWTDo18LmGE+fxJ13kYpT7m9Y8s4tq/vRr5vC4/5cDK6d72m5N8q0FUA8b4LGZSWn/6YrSU36PO9+OjREQqwIgRI1i4cOFC59yIJN83yaBnC3Cfc+7MAvvdDnzCOdc1kQN3UAp6yu
98yP1AJQyoAhU5Qb9caGOpqaC3eVSiqIKJYP5hYyY172lNvFtoyV+5ip+ZKitrg9NfXExMZ3Fe13p/tuUlHtN96nbZbSaXobfjIiWvfDmnqfGEJjfESkApQq6Emyv8QSoFeI/fYAliZ4XJGSe6epmRnzVkUqE3dizziunLkgdMKApubt7N+3OyvWbS5bEFGMbF3kkmgZa6tjlrwLXUJydZOcMnogfQcfHS/oGRxy7h2Jr5jxVup6KCJVLMmg51fANWZ2uHPu+Ww7mNnh+DE9EXOXirStYib2LLZLUr6bT4Abn1jC7RFuoAGWrtnE4QN78uaGZra0tNKlvpZBvbty7LC+JQkiktC3sTOXjB9a1i5epTrmtAkjWPvWKg54/V7GFRjXk3RCi0IKjVu79sFXOLhxCDOtjloXIblCTb3PGCalpfFWIiJZJRb0OOeuM7OhwKNm9n/AHcDyYPO+wBTgC8AvnXM/Seq4IuVQzMSecW+YC958/u0VDLImAyhkh4NnV6zf+fN6WlizaSv79e1OY0MFDZivRi1baPjr1/jlmj9g9bs+kT+29kW+VHc3M1qP4/vuPD4xav+ytriF6SbpgIVNXbij7hjOqnsUB4TKdzfybHWfKodtm8pbTkSknUjs7sbMWlP/BL4RLLvtBlxiZpdkrHfOOd1pScWKmy74+ZXrmXjDk1m7ReVrwWlsqCt88+kKT3QZRUur47bZK1iyelNJx/Lk7TZVgS1MiUrLqpUrUOhkrZxV9wiTBzTTacI9UMYuhlG6SV65/Tz2q3mLI2peLrzzvh+GU68p8uwklE6ZU+SVuJyISDuRZKCxkmTvwUQqRtx0wU3N23kuaFFJpbSeOHIfAO597vWsLTg/+fur9OhSx7rNEfvlJ2TW0nVcOXNh4kkY4qT7rjp
Vr+NMJpOq16Ch6YWrasWlHHrW2lE+dt+xrT6n7H5Np/0Gnnc680NfW+hefUa6C+IcGzlZw03kpEJKsku7cNTuq9RCpJc0srG7YkE4D4cT75byy373BtFvCk3DV3BT271PPSGxsSS6ddqOUq6ZamimtRanobnv9DtDLP/R7Gf6Ms3cLijFvbSif+e/tF/Hj7pziz/jG+sN9bdGp9z7caDP6wH8NT4nOvuO+5rY08Fx67Jnr2No23EpEqpy5lInmkbtbnr9rQ1qdSVtt3wM
8dou69JbYy4Zvz/3Pff6zhvNzp0307XPPHZ0fo0Wt4Vudd0Ys9cYJh4wkT277Bmp21SxLU0V26JU4Vm14o5bA1jDHvxfyydpGFy+uYQq9ntua4394fCzos3To/FWItIBlDzoMbMGoCewxrkoqX5E2l6Um/WOINUac/vsFb4vq7XQuf9M6rvOwzbs2r3p6Tef5oYXbuCUQRO4+9lRRPnvJm6677ZoUQqtwrNqxR23lq6YxB1RVPT3XAlOuwbWvhauK6XGW4lIB1ETt6CZNZrZWDMblmP7AWb2ILAReB1oMrPbzWzvuMcUKac4c/N0FKmAp8vAm+jUazaWbTwHsH3Hdu5fdi91H7gRLHwrRyrdd1RxWpTKpsKzasUdt5YuicApjIr+nitBfRf4zAwYdb7vupZNTb3f/pm7Nd5KRDqE2EEPcC7wNPDxzA1mthfwOHAS/vGuAZ2BT+FTWncp4rgiZRFnjENH0rn/TOq6LcUVqiIHdd2W0rn/zEjv/8yStZH2jzuB7OqmrZHKxFbhWbXGDeld9HskETgVUvHfc6Wo7+KTYFy2EE74Fuw3HgaM8a8nfMuvn3CdAh4R6TCKCXqOA3YAt2bZ9i2gH/Au8EmgEfgQMBc4APh/RRxXpCzUrS03q22ivuc8/+9Ck7QE2+t7zsNqm0IfI2qrQTETyJbF4KNjlitPVq0pYwZSXxtqxp2cjtivT0Jnk1vFf8+Vpns/3z3y3Pvgoof867Ff0RgeEelwigl6DgNedM69k77SzGqAM/E9YP7bOTfTObfZOfc8MAnYDpxexHFFyqJcXXXao/qec3J2acvFrJX6nnND7x+11aCYCWTLYuS5ubsa5VLGrFr9GhuYPGpA7PL1tcaU0QMTPKPsKv57FhGRilRM0NMPeCXL+sPwiQu2A7enb3DOvQ7MAg4u4rgiZVGOrjrtVW3XpTHLLQm9b9RWg7hBatmC21RWrSjKnFVr2oQRsbu5TR5VnhTRFf89i4hIRSom6OkGZHtsOSp4ne+c25hl+yqgRxHHFSmLJMY4VCuriTc+Imy5OK0GcYPUsga3p13js2WF0QZZtRrqa5l+wVjOHDuIugh/HcYN6c20CcNLd2Jp2sX3LCIiFaeYoGc1cFCW9R/Gd22bnaNcA9CxJj2RirC6aSvXP7KIc26cxcQbnuScG2fxs0cX5xzgnMQYh2rldsR7oh+2XJxWg0M+EO9ZSjnGoezUDrJqNdTXctWkQ3n66yfxpZMOYK8eDeT6LaivNc4cO6isKaHjPowo6/csIiIVp5hHX7OA081sgnNuJoCZ9cWP2wH4W45yw4E3ijiuSCRxJzFMjXG4bXYHHQCdR+t7Q6jrvihGuf0K7hO11SD1/d41N3p68XKNQ9n1oEFWrfHf8BOPLnvCp6Xu1N0nLfjQuRUxyLxvY2e+dNIwvnTSMFY3beXOuSt5ZslaNm3dTvfOdRyxXx+mjC5Pl7Z0U8YM5LqHF0VKZtAm37OIiFSUYoKe64GJwF1mdie+5ecMfKa2FcD9mQXMbD9gGHBLEccVCa3YSQynTRjBktWblcktQ8v6MXTq+3CkZAbO1dKyfnTO7fW1ljX4zCfM95tPucahZJXKqlWGiUeL1bexM5eMH1qWiUcLifMwok2/ZxERqQixu7c55x4FrsCP6/kM8CVgELAF+HfnXLZRo58LXh+Me1yRKIqdxLChvpZrP/VBDhuwR84uPgVTNlch19pIy3o/fK/QPD2p7S3rR+FaG3fb3qOhji+ddABPTT2RqyYdGqmbVJTvN1M5x6FIsqIkXND3LCIiUFxLD86575jZn/Fd2voCK4HfO+dypXbaClwHPFDMcUXCiDuJ4WUnD6NvY+e83eLATz9z0N6NLHp7E9sLztC5a7lqmPJ069sTqOm0mrpu+TO5mcH2zUPY+vaErNs3Nm/n7Y1bIz+Jj/P9AtTVwKdGD4rUohTF6qat3DFnBbOWrmvzrmDVKpVw4cqZC5kxL/u8PXFaDkVEpHqZi3CzJpXDzBYMHz58+IIFC9r6VCrW9Y8s4tq/vRq53OWnHMiFHx5SVLepQg4bsAcvv7kx8iSLFcda6Nx/pp94NEtXN9+lbZQPeFzuOWrqa42npp4YKSiI+/1+/vj9+eqp2XKwFKdQkKyb8NKopPFGIiJSvBEjRrBw4cKFzrkRSb6vcnhK1SpmEsNV775X0nE8G7a08KFBvVi2djNvb4yX
kiuHq2vjWJbatPpr7nXGq7LsFqtuJ2dKb1vf1oWT86a5e2TC2tjjvnrow0ZiTu9/Pi68knjyx27JjEV0njjUREpHIp6JGq1NzSysI3sk0TVdi7720r+ezty9e+x/K175X0GOXQo6GOjc3bca2NbFs7HtaOj/1ezyxZG+nGtZImqYwzduyqSYcmfh4iIiKSXTHz9IhUpNRT97Wbt8Uq39S8vf13Oyux1PwsQ/p2S+w9owYjlTJJZdyxY7nmhxIREZHkKeiRqlNMRi8prKG+houP2Y/LTh5GQ11yXbSiBiOVMknlnXOyD6TPJ9WdT0RERMpDQY9UlbgZvVLqa43GBvX6zKe5ZQc3PPYaR139MMvWbk7sfaMGI1PGDKS+Nlq+8FJMUlnM2DEREREpDwU9UlXiPHVPN3nUQHp17ZTgGbWtUk4h1NLqEkvCUGNEDkZSk1RGUYpJKitpbJGIiIhkp0faUhGSmtukmG5tqUkMf/P4Eh5ftCb2+1SS3t06xR7bVE79GhtiBSPTJoxgyerNob737p1rWbF2Mz97dHGi6YwrZWyRiIiI5KaWHmlTzS2tfP2e+Rx19cNc+7dXeXzRGp5bsZ7HF63hhw++wlFXP8zX73mR5pbd54DJJu7T8z7dO+1MIxyn21RdDUwcuU/kcqVUV2PtIuAB6L9HvAAkNUnlmWMHFaz7TVtbefK1tbGuq3wqZWyRiIiI5NZhgh4z62pmp5vZjWb2ipk1m9lmM3vBzL5tZt2zlLnCzFye5eo8xzvazP5iZuvMbJOZzTazc0v7KduXVJa122bn7pKWmtvkvJtmh7pBjfv0fPjePXbOmxKn29SnRg/iJ58+nKemnsjlpxzIMQfsychBPTnmgD3Zt0/XWOdUrO072k8Guh4NuScuLaShvparJh26s+6P2r8P3TvnT7AQ9
Kp1LGFomIiEhuHSboAc4C7gUuAFqBPwGPA0OAK4E5ZtYvR9kngelZlnnZdjazM4B/AKcC84EHgAOA6WZ2bUKfp92LM7dJIUk9dZ82YUTo90p1i4P3J0q85cJx3Pv5o7nlwnF8KmIA1REl0eqRqvt9+3Rl09ZwgUzY6yqfShlbJCIiIrl1pKCnBfgVMNw5N9w5N8U5dypwIPAccBDw0xxlf+OcOz/LclfmjmbWG7gJqAUmO+eOd85NDt5/MfBlMzs+6Q/X3pRqbpOknrqH6TaVmqsm1S0uyXPqSJJs9WirOXPiBskiIiJSHh0m6HHOTXfO/Ydz7uWM9W8ClwQ/TjKzYlN3XQT0AP7onLsn7ThvA18Nfvxykcdo90o1t0mST90zu02ld1m7/JQDeWrqiVw16dC8AU/cc+pIkmz1aKs5c5IMkkVERCR5Sh/kvRC8dgb6AG8W8V4fC15nZNl2P9AMnGRmDc655iKO064VM7fJJeOH5t0nSkavME/dU92mCh03qXNqrw4bsAcvv7kxUtAxoFcXlq/dzMQbnoydsS9dKa+rQlJB8mUnD+POuSt5ZsnaojIRioiISHIU9Hj7Ba8tQLa7phPM7HCgAVgF/NU5l3U8D/DB4PXZzA3OuW1m9hIwGhiGH+/TIZVybpPUU/crZy5kxrzsT/7ra43JowYybcLwsjx1D3NO7Vl9rXHjeWMAuHPuSp5cvIZX3mpi3eZtZPukZn4OoVXvbmHVu1t2rn980Rp++tCrsb+bSpgzJ4kgWURERJKloMe7NHh9wDmXrXP/ORk/f9fM7gbOd85tSq00sx7AHsGPuQYWrMIHPfsSIugxswU5Nu1fqGwlK/XcJpX41D11TpeM35/P
5ZXly1IWtA0B6ld1FLv+Ff3bR1l
vUl/LynXvsfLdLTk/eyqz2pLVmyJ3BdOcOSIiIpJNh/9Lb2YfBS7Et/J8K2PzYuArwF+B5UAv4FjgB8AZ+GQFE9P2T097/V6OQ24OXhuLOvF2btyQ3rEmAI2a5avSnro3t7Ty5TtfYP6qDW19KonJ10Uws/6/fs98nnptbaj3TWVWu2rSoZHOpRzXlYiIiLQvHTroMbODgFvxPW0ud869kL7dOXdrRpHNwB/M7FHgReB0MzvCOfdMqc7ROTci2/qgBajdpoD6xOEf4Ed/fxUXoamjGuY2iZKmu9JF7SIYN7PaZScPA+COOSuYtXRd3ha7KWMGct3DiyJ1H6yG60pERETy67BBj5ntg58/pxfwY+fcdWHLOufeNLPf4luBTgVSQc+mtN26AhuzFO8WvDZFPukq0dzSyuV3zY8U8EByWb5WN20NdQOdtBXrNnP7nOKyhJVTXY3xnycM5dQRe/Hwv96J3UUwVd93zVsVK7PahdPnZE2QkG38TypT3m2zw9ez5swRERGpfh0y6Anm0vkbflxNKniJalHwundqhXNuo5ltwI
GQBkm/Uwlbt4eYxjVpw4AUSc1o4k5jZpbmnlypkLmJHl5rvYAfRhjn3Wr2dFDvTa0hdOGMqlJ/lWloP27hGpi+Dqpq3c+swy7pizkrc3bi1q7FK+roDZxv8knb1PRERE2r8OF/SYWXf8GJ3hwD3Axc7FuhXtFbxuzlj/An7cz4fICHrMrB44BJ+2+tUYx6wYcQOIOF2cagx+NOWDRQUizS2tnHfT7Lw3wsUMoC/kypkLdslSVunqa42zxu0buVzqurhr7kq27yjBieWQPv6nErP3iYiISNvqMJOTAphZZ+CPwFjgQeBM51xrjPcx3k9gkJma+v7gdXKWoh/Hp71+qD3P0ZMKIG6bnTv1ciqAOO+m2TS3vF/FcSaP3OHgj8+/UdQ5R2ldSt1AJyVOoJe0muzzZeYUp8tX+nVRzoAnZca8laxu8skXk5pYVkRERKpDhwl6zKwWuA04AXgcmOSc25Zn/75mdomZNWas7w78HBgHvIVvLUr3G/xYnk+a2aS0cv3wWd8AflTkx2lTxQQQxUweGVfcAfSpG+hixQn04qqrgc8fv/8uN/lfOukAPnbY3oSNe+J2+Zp6z/w2TdLQ0uq4c+6uY3lS2eNuuXAc937+aG65cByXjB+qMTwiIiIdTEfq3vafvN86swa4wTfY7OYrzrk1+IQD1wNXm9kc4E2gL77bWh9gPTDZObdLamrn3DozuwC4E5hhZo8Ba4GTgJ74pAmPJfnByqmYDFx9Gzu3yeSRcYKO1A10EqmuyxkIfGr0IL566kE7fw7TrS/FgMmjB/DdTx4SqQWkuaWVqXfP574iW+OS8MyStRWTnlxEREQqR0cKenql/Xtizr3gCnxQtBa4BjgCGAYcBbQCS4GbgZ84517P9gbOubvN7Fjgm0H5TvjxPdc756YX9SnaWLEBRFtMHllM61ISN9DFBGxRZGuhidIq54C6mprIAU/YoKocylXXIiIi0r50mO5tzrkrnHMWYlkW7N/knJvqnDveOTfAOdfgnOvmnDvEOfeVXAFP2vGedM6d5pzrFZQb094DHii+e9q4Ib1jlS9m8si2aF1KV0zAllJjucfl1NcaZ44dtFvyhZff3MgdEVNkR+3WV2nzDiVR1yIiIlJ9dIcgkRQTQDS3tLL4nU2Fd85Q7OSRbdG6BO+n816x7r3CO2fRqdYYM7g3Rw3dc+fnv3PuyoLz5aQyqN0xZyU7Ig4litKtr1QJGuprjYP37pE3VXUuxQTHIiIiUr0U9EgkcQOBLvW1sbtBpTKJxZ1UdNyQ3jy+aE3k48a9gc6XzjusGoNHvnI8A3p13WX9JeOH5g1IkuhuFrZbX9IJGvbt05UpowcyZfRAHI6jr34k0vsXGxyLiIhI9VLQI5HEDSA2Nrfw0usbYx3va6ceyNfvmR97UtEpYwZy3cOLynIDndQYl0+PGbRbwBNGEt3Nw
mJdmt
7WmPG5o3YJXiePGsBts8N3z4uTZltEREQ6hg4zpkeSMWXMQOpro036UmvECngmjtyHX54ziv+4ZV6sOYFS+jU2MHnUgEjHjnsDnUTQETdldFLdzcK25iWZNCBbfU+bMCL0GLC4dSYiIiIdg4IeiSROALFH1/pYxxrarzvXPPCvSHMCTfnl01kH4pfjB
YoCNXQoKwkupuFrZbX1JJA3LVd0N9LdMvGMuZYwflDLSLrTMRERHpGNS9TSKbNmEES1ZvDhWMjBzYk+dXro91nH++uppnV7wbqcz8VRs48qqH+NToQbt0d0vdQF85cyEz5mUPDuprLW83uULiBh3pY1mK6Z6VRHezKN364nZ1TKmrMT41On99N9TXctWkQ7ns5GGhkjiIiIiIZKOgRyKLEkD0b+zMczGDnhXr3osVRGzfAbfNXsGS1Zt2aQEo9Q103KBj3eZtO1N6F3MOSXQ3i9KtL85YKYC+jZ05e9wgzh63b+hj9W3sXDCJg4iIiEgu5lxy2ZekfMxswfDhw4cvWLCgTc9jddPWvAHEOTfOit0a0LNrPevfaynq/M4cO4irJh2ac3vcjHDZTLzhSZ5bsb6o862rYbdWqrCKqWvwLTdRu4l9/Z75kZINTBy5Dz/59OExzk5EREQ6ghEjRrBw4cKFzrkRSb6vWnqkKIWewBfT+tClvpb1FBf0zJi3kstOHrZbAJMvrXSYjHDZJDHGJdVKtfjtJm65aFykACRud7Ma89ni4gRaUbo6jhvSO28AKiIiIlIqSmQgJRU3EDBg7z0aij5+arLNdKm00sVkhMsmbKKEMOYsf5dv/fGlSGXiZNarMfjLF4/hqkmHxhrHpGQDIiIi0h4o6JGSihsI9OpWHzsBQqbUeJmUKGmlZy1dx5UzF4baN07Qkc/d81ZlzUSXS5zMep8eM4iD9u4R9dR2kRor9dTUE7n8lAM55oA9GTmoJ8ccsCeXn3IgT009MXZQJSIiIpIEBT1SUnEDgXWbW9iR0HCz9C52cdJKz5i3MlTwESfoyGeHg98+uTRSmbac2ybV1fGWC8dx7+eP5pYLx3HJ+KHKriYiIiJtTkGPlFTSgUAc6V3s4qSVztZFLpcoQUcY97/4ZqT91d1MREREZHdKZCAlF2WwuwFJ5xNMn2wzblrpZ5asDZUuOUw67yjWbd4WuYzmthERERHZlYIeKbmw8/ocvHcP5q/akOixMyfbjJtNLkq5bEHHk4vXJNZdLyzNbSMiIiLiqXublEX6YPfPH78/+
pSmNDHY0NdezbpysXH7MfdTXJJQFIyZxsM242uTjl0se4DOzdNdZxe3frFKuciIiIiLxPQY+UTXNLKz/++yv8+vElLF/7Hk3N22lq3s7yte9xw2Ov8WyRE3tmyjZQP+54m/QucnGcdshescp97NC9izquiIiIiCjokTIJMzdOUvIN1I+TTS6zi1wcF3x4CFEbsmoM/v3oIUUdV0REREQ0pkfKJMrcOFHt26crvbt1CjVQP5VN7
Z4bKxwe5d5OLo19jAGaMGcNfc8OmyJ48aoIQDIiIiIglQ0CMlF2dunLDqa40ZnzsqUnAQJZtcknPZfPeTh7BszWbmLHu34L5jBvfiO588JJHjioiIiHR06t4mJRdnbpyw4rTCtNVcNg31tdxy4TjOHDsoZ9KGuhp/3FsuHKc5dEREREQSopYeKblSdWsrphWmreay0Rw6IiIiIuWnoEdKLu7cOLkY8G9jBzFtwvCiW0Paai4bzaEjIiIiUj4KeiSS1U1buWPOCmYtXRe6hSLu3Di5jB3Sm6smHZroe4qIiIhI9VLQI6E0t7Ry5cwFzJi3arfxOY8vWsNPH3qVyaMGZm19GTekN48vWpPYuRw7rG9i7yUiIiIi1U+JDKSgMHPstLQ6bpu9gvNumk1zS+su2+LMjZNLEnPmiIiIiEjHoqBHCooyx86speu4cubCXdal5sZJQhJz5oiIiIhIx6KgR/KKM8fOjHkrWd20dZd10yaMYNyQ3kWdS5Jz5oiIiIhIx6GgR/KKM8dOS6vjzrkrd1kXZm6cXEoxZ46IiIiIdBxKZCB5xZ1j55kla3dLx1xojpoTD+rHw/96R3PXiIiIiEiiFPRIXnHn2MlXLt8cNQft3UNz14iIiIhIotS9TfKKO8dO0nPziIiIiIjEpaBH8oqbfOCI/fokfCYiIiIiIvEo6JG84syxo7l0RERERKSSKOiRvOLMsaO5dERERESkkijokYKizLGjuXREREREpNIo6JGCwsyxo7l0RERERKRSKcWWhFJojh3NpSMiIiIilUpBj0SSb44dEREREZFKpO5tIiIiIiJS1RT0iIiIiIhIVVPQIyIiIiIiVU1Bj4iIiIiIVDUFPSIiIiIiUtUU9IiIiIiISFVT0CMiIiIiIlVNQY+IiIiIiFQ1BT0iIiIiIlLVFPSIiIiIiEhVU9AjIiIiIiJVzZxzbX0OEoOZbezcuXPj/vvv39anIiIiIiKSiNdee42tW7c2Oed6JPm+CnraKTN7C+gKrGzrc6kSqejxtTY9i+qiOk2W6jN5qtPkqU6TpfpMnuo0eUnX6UDgPefcXgm9H6CgRwQAM1sA4Jwb0dbnUi1Up8lSfSZPdZo81WmyVJ/JU50mr73Uqcb0iIiIiIhIVVPQIyIiIiIiVU1Bj4iIiIiIVDUFPSIiIiIiUtUU9IiIiIiISFVT9jYREREREalqaukREREREZGqpqBHRERERESqmoIeERERERGpagp6RERERESkqinoERERERGRqqagR0REREREqpqCHhERERERqWoKekREREREpKop6JF2w8xGmdlUM7vHzFaZmTOzgrPrmtn5Zj
zDaZ2Toz+4uZHVWgzNHBfuuCcrPN7NwCZQaY2W/N7A0zazazV83sSjNriPpZyyVqnZrZFal9cixX5ylb1XVqZl3N7HQzu9HMXgnOd7OZvWBm3zaz7nnK6hrNIk6d6hotzMwuC37nF5nZBjPbambLzex3ZnZonnK6TrOIWp+6RqMzsz5m9k5QP4sL7KvrtIAw9VmV16lzTouWdrEA9wEucylQ5qfBfu8F5R8AWoDtwOk5ypwRbN8BPAbMAN4N3ufaHGWGAquDfV4E7gBeC35+Aujc1vWXRJ0CV6R9ppuzLJ/qqHUKXJRWhwuBO4P
WOw7mWgn67R0taprtFQ9boG2ALMAu4JlleC894GfFzXaenqU9dorDq+OfjcDlicZz9dpwnVZzVep21e8Vq0hF2ArwHfASYAewHN5L9BPyn4hVkDHJC2/khga/BL2DOjTG9gQ1BuUtr6/sCiYP3xWY71RLDturR1dfg/fg64oq3rL6E6Tf0neH6EY3SIOgXOA34JHJyxfm/g2eCc/6BrtOR1qmu08Oc9GmjIsv7zwXm/BdTpOi1ZfeoajVa/Jwbn+kvy36TrOk22PqvuOm3zyteiJe5C4Rv0vwS/LF/Ksu26YNuXM9Z/NVh/X5YyE4NtMzPWjw3Wv03G04jgF30bsC79j16lLiHqNM5/gh26ToNzPjL4PM1AJ12jJa1TXaPF1evi4HMdpuu0ZPWpazT85+4S1OEC4ADy36TrOk22PqvuOtWYHqlKZtYFOCH4cUaWXVLrJmSs/1ieMvfjb7BOyuhjmioz0zm3Nb2Ac+5t4HGgF/DhcGdfdVSn8ELw2hnoA7pGE7BbnRZBdfq+luB1G+g6TcAu9VmEjlqf04D9gM/xfl3uRtdpaKHqswgVXZ8KeqRaHYi/GVrtnFuVZfuzwethGes/mLF9J+fcNuAloAEYFqZMgWO1ZyeY2U/N7Bdm9k0zG5VnX9Wp/yMD/o/MuuDfukaLk61O0+kajcjMzsFfl4uCBXSdxpajPtPpGs3DzA4Dvgz81jn3eIHddZ0WELE+01XNdVpX7BuIVKhBwWu2
xwzm02s/VALzNrdM41mVkPYI985YL1o4F9gflhjpW2ft+Q594enJPx83fN7G58M/im1ErV6U6XBq8PpD3J0jVanGx1mk7XaAFmdjkwAugGHBz8+w3gTOdca7C
tOQQtZnOl2jOZhZDfAbYD2+y1Qhuk7ziFGf6armOlVLj1SrVC
9/Lsszl4bcwok69cZpkwx8pWpr1aDHwF/8e8OzAQOBt4HZ+x5ZaM/Tt8nZrZR4EL8S0S30
pGs0pjx1CrpGozgFnyxiMr6+luNv0Oel7aPrNLww9Qm6RsP4AjAGuNw5tzbE
pO84tan1CF16laekQkNOfcrRmrNgN/MLNH8WkmTzezI5xzz5T/7CqPmR0E3AoY/o/NCwWKSAGF6lTXaHjOuZMAzKwncCjwbeAfZvZN59z32/Lc2qOw9alrND8zGwR8D/iHc+7mNj6ddi9ufVbjdaqWHqlWqSbXrnn26Ra8NmWUyVcus0yYY2UrU1Wcc28Cvw1+PDVtU4etUzPbBz9HRC/gx8656zJ20TUaUYg6zUnXaG7OufVBH/+PAvPw3VfGBJt1nUZUoD7zldM16v0M6IQfbB+WrtPc4tRnTu35OlXQI9VqRfA6INtGM+sG9ATedc41ATjnNuLzy+csl7Z+edhj5ShTjVIDdfdOreiodWpmvYG/4fsg/xbfRSCTrtEIQtZpIbpG83DOteAnBTTez3Kl6zSmHPVZiK5R+Di+q9MvzOyx1ALcHmzfJ239XsE6Xae5xanPQtrldaqgR6rVK/jJyPoGT4czfSh4nZ+x/oWM7TuZWT1wCD7l4qthyhQ4VrXpFbxuzljfoerUzLoDfwWG4ydWu9gFEw5k0DUaUoQ6LUTXaGFrgte+wauu0+Jk1mchuka9nsBxGcu4YFtD2rpU6mNdp/n1JFp9FtIur1MFPVKVnHNbgEeCHz+VZZfJwevMjPX3Z2xP93H8fwgPOeeas5SZYGad0wuYWX/gGPxM0E+GO/v2x8wMP/EY7J52ssPUaXCuf8RPtvYgubM26RoNKUqdFngfXaPhHBe8vga6ThOwS33mo2vUc85ZtgUYEuzyWtr6ZUEZXac5xKnPfNr1deoqYIZYLVriLPinBS7P9pPws/yuAQ5IW39kUPZdoGdGmd745lkHTEpb3w/fnOuA47Mc64lg20/T1tUBdwf
2jr+iq2TvFPKi8BGjPWdwd+EXzON4GuHbFOgVp8K4QD/plZD7pGS1+nukZD1enR+H74NRnr6/EZnlrxXWEG6jpNvj51jRZV14ODc16cY7uu04Tqs1qv0zavdC1awi74WXufSVt2BL8M6es+llHmp8E+m4H7gL/g09xuB07PcZwzgj9UO/BPju4K
N0wI9ylDkg+I/W4Ztgb8c/2XP4pxOd27r+iq3TtP8gm4J6+T1+jEXqc78LHN1R6xQ
4wLlnuAm3Mse+oaLU2d6hoNVafnB+e3Gp8U4vf4FrQ3gvVbgClZyuk6TaA+dY0WVdepussa9Og6Ta4+q/U6bfNK16Il7JL2xyXfcn6OcnOD/wTfxY8NOKrAsY4O9ns3KDcHOK9AmYH4AdZv4vsWLwK+AzS0dd0lUaf4HPlXA4/hJwtrDurmJeBaYJ+OXKfAFSHq0gGDdY2Wpk51jYaq0yHA9/FPVt8AtuGzJ70E/C8wNE9ZXadF1qeu0aLqejAFgh5dp8nUZ7VepxYcSEREREREpCopkYGIiIiIiFQ1BT0iIiIiIlLVFPSIiIiIiEhVU9AjIiIiIiJVTUGPiIiIiIhUNQU9IiIiIiJS1RT0iIiIiIhIVVPQIyIiIiIiVU1Bj4iIiIiIVDUFPSIiIiIiUtUU9IiIiIiISFVT0CMiHYaZjTezu83sdTPbZmbvmtkrZnaXmf2nme3R1udYqczsZjNzZnZ8jLJ9zOzbZva0ma02sxYzW2Nm/zCzr5pZ3+TPuDLFqUczOz4oc3OEMsuCMs7Mzsyz39i0/VzY928PzGxo8Hv+w4z1VwSf94oC5VN1ODjm8fc2sy1mdkOc8iKSLAU9ItIhmNm3gUeAScAG4M/A34Atw
Aw5usxMMKc4NcFsys9OBJcCVwEHAPOCu4PVw4BpgsZmNaINze6yYm9p25Ow82z5TtrMov6uAbcAP2uLgzrk3gV8BF5vZsLY4BxF5n4IeEal6ZjYKuAJoASY654Y75yY55z7tnDsc2Ae4HFjfZidZhczsNOBuoCvwZaCfc+5U59xZzrlTgL7AhfjAs6O09nwdH1zPLtPxngNOMbM9MzeYWR3waWAhsLVM51MWZvYhYDJwo3NudRueyg/w91rfbcNzEBEU9IhIxzAJMOBO59x9mRudc2855651zv2r7GdWpcysGzAd/3fmIufcj51zLen7OOe2OeduAkYBy8p/luXnnHvTOfcv59x7ZTrk74FUcJPpI0A/4NYynUs5
g9XdteRLOudeBR4GJZta/Lc9FpKNT0CMiHUGqFSHSE9+0Pv1mZpea2UIzaw7GBP2vmfXMUc7M7EwzeyQYN9RsZi8HYwm65ihTb2afM7MnzGx9MBZgsZn9NmipIujS9mhQ5Lz0sRip8QlmNjj4+TEz62FmPzazpcE4mp8G+/Q0sy+Y2YNmttzMtprZWjN7wMxOjlJHeZyL
dZzrnp+XZ0zr3unFuWUR91Zv
gnFAG4P6eN7MvhS0UJCx/7LUmBQzu8jM5gdl3jKzX6Z/V6k6Ao4LVi3NNq4lffyNmZ1iZo8G341LvV9wnl8ws3lmtilYZgfnXpvlPHOO6TGzEWZ2X3DNNJnZ42Z2ar66C+FPQBPZu7F9BnD4wCgnMxtoZteb2WvBtbzOzP5sZkdl2Td17d9uZq+a2ebgs8w2s8+b2W73Hfb+GJvzzexQM/tTUAebzY/72u04Bc63O/BvwCLn3LwoZUO8d6pLZL5lcEaxPwD1wPlJnouIRLPbHw4RkSq0Mng9w8yucs69E7H8/wGfBR4DXsTfLH8BOM7MjnHObUztGNzU3QqcCWwC5gLvAqOBacBpZna8c25LWpluwF+AY4HNwBP4rnaD8eMxNuDHwDwB7AWcArwW/JzyfMY5dwH+AewbvD4bnAfAEcD/4ltXXgGeBgbhn/x/xMwuClpgivGx4PUPUQuaWRfgfmA8sA54BmgGxgE/Acab2UTn3I4sZX8AXI
hYDR+O/u4PN7DjnnMN/L9OBU4H++C54m/Kc0lnARfjv8q/A/oALgpo/Ah8FNgJ/x7congDcAJxsZpOznWeW8x6ND2i7Ay8FywH46+LnhcrnsQW4Bx8k7++cey04Xnfgk8ATzrkVZp
vI7Efxe98NfK/fhg9hTgVDM72zl3R1qRzvjvfC2+29yzQB/gKOBnwFhy3/yPDvZ5DXgQPwbsWOBhMxvjnHsp5Gc+Dl+Pj4XcP4oHyN4q2R04I/h3a8a21Hl8DD+GTUTagnNOixYtWqp6AfYD3sM/1d4I3Iy/iR0J1OYptywoswEYlba+O/BwsO2nGWUuD9Y/CuyVtr4T8Jtg29UZZVL
wH0zdjWHxiX9vPxwb435zjnwcF2BzwF9MyyzxDgiCzrR+IDow1A94xtNwfveXzIOl8V7P/hGN/Xz4KytwN7pK1vxN90O+BzOb6rN4ED09bvCSwKtp2QUeaxYP3gHOeR+swO+HSW7V8Otr0E9E9bvzfwr2DbfxaqR3ygtCBYf2XG/p9PO4es33mBa3cAcFLw72+nbT8nWPfZ4OdmwGW8Rw/gDWA7cHbGttH4gLQp/ZrFP0w9HajP2L8vMCc45rEZ265I+4xfzNj2k2D97yJ89quDMhfn2J463hUh6zDr9ZHx/d0b7PuzHPusDuq4IervgxYtWpJZ2vwEtGjRoqUcC3AisCLt5iq1vIt/Kr93ljKpm57vZ9k2HNgR3PQ1BOvqgpubTek3wWlluuBvytcBNcG6DwQ3lc3AviE+x/H5boDZNegZHaOevheUnZCx/maiBT1bgv0PjHj8fviMWyuALlm274UfdP9Cju/qoixlUsHJFRnrH8t3U5v2mf+cY/vyYPtHsmybEGxbVKge8S1aDt/CsVsQjm/pKiboqcEHL6+kbX8wuOZ6BT9nC3q+FLzHtTmO8V/B9v8KeU6p4OtHGeuvCNY/kaVMn2Dbsgif/S9kCa6yHC/skvX6yPI78whQl2OfJ4J9Rkb5fdCiRUtyi7q3iUiH4Jx72MyG4ruYfATfzeYwoCd+0PMZZnasc+6VLMVvz/J+C83sBXza5ZH4LmIfwrcs/N0593aWMlvMbF5wDgfguwsdD9Tib6yXF/kx073pnJuba2PQNetEfLejvfHdkgjOK/213I7Hj394wKV1AUxxzr1lZouAQ82sS5Z9/pblPV8NXveOeU5/ylxhZoPwXQJXO+eyHfPP+C6KQ81sL+fcW3ne/5jgdYZzLrNrFMBt+K59sTjndpjZbcBlZjYG393zROBPzrl38xT9SPB6T47tjwevYzM3mNnhQfl98dn7DN9SB7mvrd3q0Tm31szWEe276xe85vtsAC+we7fQdJOBbvnewMz+DfgGPmCd7JzbnmPXdcFrR8lSKFJxFPSISIfhnNuG74ZyL/gB/fgBz/+Dv1G6Hsg2kD9XMLIMH/R8IPh5cPB6shWe6HFPfNAzMPj5tQL7R7Ui1wYzG4C/Kf9gnvKNebaFsRafCrwv/nOGNTh4vdjMLi6wb2/g9Yx1q7Ls1xS8ds6yLYxsdZn6zrNeG845Z2bL8UH1PkC+oCfve5FMZrtbgcvwY8SW4wPtQlnbBgevT+Ya8xPYmQ7bzDrhW7NyTohK7msr23cH/vvrne8EMuyRVi6f+5xzV+TaGCSbyBn0mE8wclNwnE8459bl2hffrRb89SAibUBBj4h0WM659cAvzOwN/ID08WbW1cVPJ5zKTLUYeLLAvmtjHiOs5jzbfoMPeO7GzyPyCtAUtAh8Fvgl/sl8MZ7H3+x/iF0TLhSSqsPn8U/i89ltbhkXImlADPnqMp9CgW/ZOOeeM7OX8UH+m/hWqPsLFEt9FzPwCTZySU/1fhk+4HkR+CpBAg3nXIv5CTpfIfe1ldR3tyF4LTZwz8nM9sL/n9EZmOKcW1igSCoQW1+qcxKR/BT0iIj4vvjgn373xCc9SLcv/iYu077B6xvBa+pJ9b+cc+eHPHYqs9z+IfcvSpAp7mTgbfzg/MzuVPsldKj78d34zsRnigsrVYdPOOe+kNC5lELqO983zz6pbZmtUZneLPBe+Y4Rxa3A9/HJMX7tnCs0Iekq4EB84o2wqZ8nBq9nOucWZGxL6toqJJWdMU
UGhm1hm4Dx/Uf8059+cQxXoFr205UapIh6Z5ekSk6lmBvjnA0OB1G7Amy/YpWd7zIHzXtk28Py5gDv4p83FmFvaG6zF8ittTzGxggX1T5wjxH1rtgf+
83MgMfM6nn/prVYv8Pf4B1hZufl29HMPpA2t8mj+Pr4eHA+pRS7Lp1zK/Dd3vqa2YmZ283sY/gb3cUFxvPA+2Njzsg2jw2+dSYJf8Bf32sJN2nn34PXKNdE6uY+W1e13X6PSiTVQnhgid7/1/gxVrc6534QssxB+JbJl0t0TiJSgIIeEekIvmtmPzSz3VpTzGwffHcu8AO7t2XuA3zBzEamlemKn7vHgN+mBtMHT85/gO9Wc4+Z7fZk28z2MbNzUj87597A34A2ANPNrE/G/v3MLH0Qe6qFIe4N3Tv4wOwQMzs67Ti1+DlEhsV831045zbj52PZAfzGzP4rM4gxP7Hnufg5iAYH5V7Hj5MYDNxmWWaxN7OhZnZG5voYiq3L/wtef2xmOweoB12ffhj8eF2I93kM30Vsf+Cb6RvM7D+AI2Oe3y6cc8ucc32dc3s658J0Ofwl/nr5qpl9NjMgC76/U8zskLTVqaQRn8vYdzJ+wtpySAWRY5J+YzP7Kj7d9yyg0JizVJn98VnoZjvn4naVFJEiqXubiHQE3fETVn7FzF7FT5rYjE/nOw6fLWwxPkVvNrcCs8zsEXzAcCw+dfIC4FsZ+16Nf6p7DvCymT0HLMXP03MgPtX1fOCWtDKXBtvGA8vN7J/4gc/74sfE/Bx/k4VzbpmZzQdGm9ns4Bxa8QH
lnGMjnntgcTeH4f+EfwmdYF9dAfP0fOJYXeJwzn3F+Cm93pwI+Bb5vZM8Hx+gTH7Ikf55A+Yeyl+KDnDPwEmM/jW1W64etvKH48xd1FnuKfgPOAP5jZ3wjGgjjnLgpZ/if4iUhPAxYFdWn4zGiN+C5QNxR6k2As1fn4uZ+uDOrsJfznHB28x+dDf6qEOOfWm9kngZn4AOibZvYSPivaXvhrsye+JSg1cegP8JO+Xm1mn8IHQQfgP8e1wFfKcO
xLfAHl+C974qeH0XPx4w2z5fcc6ltxinzqPQGCoRKSEFPSLSEXwPmIufRf6D+BTBe+ADi9n4G+gbgtaJbL6ID1wuwk/suQ4fHHzLObchfcdgIP25ZjYD+Cz+afOH8DdJK/EtAHdklGkys/H4p+NnB+dXi2+J+D27d0U6I3ifY4BR+Fb7VWRJrZyNc+5/zGwVPsg7Gj+nzhPAt4NzTYxz7l4zexwfSJ2GT2/cAx9gzMffUN+UnvkqSO19Gr4uzsN3IxyL7y63HB8w7pZGPMa53WNm/4V/Yj+B97O7hQp6nHOtZvYJfEByPv76Ah9U/xb4ZdjECs65WWZ2JD4YPRY
mV+cF6baYOgJzivZ8zsUPycPB8Djgs2vYmfTPde4KG0/f9pZh/Gf46R+JbDF/HX7LOUIehxzm0KUnRfbGZjnHNzEnz7VGvXqXn2uYJdu8meBbTgs9qJSBsx5yomuYyISEUxs2X4CUOLzWQmImUUzBP0HHB9WybECNLDL8fPwfTptjoPEdGYHhEREakyzrnngbuAC8ysX4HdS+ly/Li2b7fhOYgICnpERESkOn0dP17vq21xcDPbG9/F9dfOuSgT9IpICah7m4hIDureJiIiUh0U9IiIiIiISFVT9zYREREREalqCnpERERERKSqKegREREREZGqpqBHRERERESqmoIeERERERGpagp6RERERESkqinoERERERGRqqagR0REREREqpqCHhERERERqWoKekREREREpKop6BERERERkaqmoEdERERERKqagh4REREREalq/x/VOcbNPu19PAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(dpi=150)\n",
"plt.scatter(classical[:,0], classical[:,1], label=\"classical\")\n",
"plt.scatter(disco[:,0], disco[:,1], label=\"disco\")\n",
"plt.scatter(reggae[:,0], reggae[:,1], label=\"reggae\")\n",
"plt.xlabel('Spectral Centroid Mean (Hz)')\n",
"plt.ylabel('Spectral Centroid Stdev (Hz)')\n",
"plt.legend()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**1a**\n",
"\n",
"Use sckit-learn to report the 10-fold cross-validation classification accuracy for a linear support vector machine and a naive bayes classifier trained on the two features calculated above (mean centroid and std centroid) to predict the three genres. Show the confusion matrix for each case. \n",
"\n",
"(Minimum: 1 point)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For Linear Support Vector Machine:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.svm import LinearSVC\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.metrics import confusion_matrix, plot_confusion_matrix"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"X = np.concatenate((classical,disco,reggae),axis=0)\n",
"y = np.concatenate((np.a
ay([0]*100),np.a
ay([1]*100),np.a
ay([2]*100)),axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stde
",
"output_type": "stream",
"text": [
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n"
]
}
],
"source": [
"clf = LinearSVC()\n",
"y_pred = clf.fit(X, y).predict(X)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stde
",
"output_type": "stream",
"text": [
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n"
]
},
{
"data": {
"text/plain": [
"a
ay([0.63333333, 0.4 , 0.53333333, 0.5 , 0.46666667,\n",
" 0.4 , 0.46666667, 0.33333333, 0.36666667, 0.36666667])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scores = cross_val_score(clf, X, y, cv=10)\n",
"scores"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.4466666666666666"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy = scores.mean()\n",
"accuracy"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a
ay([[ 0, 94, 6],\n",
" [ 0, 92, 8],\n",
" [ 0, 34, 66]], dtype=int64)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"confusion_matrix(y, y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAIhCAYAAABT4Ew8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABcSAAAXEgFnn9JSAABc9UlEQVR4nO3dd5hdVdX48e9KL4QUSKiBAKF36SACKlVAwYaCil1fCwiCXdBX+Skqgopio/jaBVRApal0kCK9k9BJgISEJKRn1u+Pc4acTO4kM8mZTHLn+3me+5zMOfucs+/k5mbdddfeOzITSZIkSYVe3d0BSZIkaWVigCxJkiRVGCBLkiRJFQbIkiRJUoUBsiRJklRhgCxJkiRVGCBLkiRJFQbIkiRJUoUBsiRJklRhgCxJkiRVGCBLkiRJFQbIkiRJUkWf7u6AVn0RMREYBDzd3X2RJKmbjQZmZuba3d2RiLgE2KSLLj8uMw/vomt3OwNk1WFQ0GvIIF
qrs7ouaz4Wazu7sLalJPjh/c3V1QE5o5/2WSlu7uRqtN+vWLrcaO6VvrRR97Yh5z52at11zZGCCrDk8PYrWt9ogDursfakJXXHtXd3dBTeqQHX3PUv1umPQ7Xpk/ZaX5RnXsmL7ce+2GtV5z232e5IFH5tZ6zZWNAbIkSVLTSlpqz2g3d/YYHKQnSZIkLcIMsiRJUpNKYEHWm0Fu/vyxGWRJkiRpEWaQJUmSmlhLj8j51ssMsiRJklRhBlmSJKlJJdQ+i0VPyEcbIEuSJDWtZEHWHdI2f4hsiYUkSZJUYQZZkiSpiTlI
PMIEuSJEkVZpAlSZKaVAILas4g94R8tBlkSZIkqcIMsiRJUhOzBrnzzCBLkiRJFWaQJUmSmlRC7fMg94R8tAGyJElSE6t3Hb2ewRILSZIkqcIMsiRJUpNymrdlYwZZkiRJqjCDLEmS1MQW9ISUb83MIEuSJEkVZpAlSZKamLNYdJ4BsiRJUpMqBulF7ddsdpZYSJIkSRVmkCVJkppVQkvdKd8ekEI2gyxJkiRVmEGWJElqUtYgLxszyJIkSVKFGWRJkqQmVncGuScwQJYkSWpSCbSkJRadZYmFJEmSVGEGWZIkqYlZYtF5ZpAlSZKkCjPIkiRJTSoJFtScD80ekJE2gyxJkiRVmEGWJElqYnXPYtETmEGWJEmSKswgS5IkNSmXml42BsiSJElNbEFaMNBZ/sYkSZKkCjPIkiRJTStoqT0f2vyD/swgS5IkSRVmkCVJkpqUg/SWjRlkSZIkqcIMsiRJUhNzFovOM0CWJElqUgm0WGLRaX6kkCRJkirMIEuSJDWtYIHTvHWaGWRJkiSpwgyyJElSk0rqH6RnDbIkSZLUw5hBliRJamL1LzXd/AyQJUmSmlRmsCBrnuat5uutjPxIIUmSJFWYQZYkSWpi9U/z1vz8jUmSJEkVZpAlSZKaWEvN07z1BP7GJEmS1C0iYpeI+GNEPBcR8yJiakRcHxHvj4jFRgNGRO+I+ExE3BsRsyLixfL8LevslxlkSZKkJpVdsNR01rTUdES8FfgD0Bv4L3A9MBLYG3gt8Ebg6Er7XsCfgCOAqcDfgDWBtwFvioj9MvPWOvpmBlmSJEkrVET0AX5MERwfnZk7ZeY7M/P1wHbAS8C7I2K/ymkfoAiOHwW2yMy3Zea+wNuBQcBvyusuNwNkSZKkJragnAu5rkdNtgBGAQ9n5m+rBzLzQeDX5Y+7VA6dUG5PzsznK+0vAi4BxgJvrqNzBsiSJElNKilW0qvzkfV0bU4H200GiIiNgC2BWRSlFW1dWG4PW/6uGSBLkiRpxRsPjAM2j4h3Vw+UA+6OAaYAfy53b19u78vMeQ2u999yu10dnXOQnrQC9BvQwlGfeoF9Dp/CqPXmMX1qb26/ZggXnL4Okyf27e7uaSX31KP9+e2Za3H3jUOYPrU3I0bNZ9c3vsx7TpzI0DUWLPX8M04YzRW/XwOA7/35U
Z7ZWu7rKaxOrD5/L2Y59gt9e9yMi1ZzN3Ti+ef24gd906gnPP3Ky7u6cOWrASTvOWmQsi4n3AZRS1wydS1BaPohik9wBwbGa+VJ6yQbl9pp1Ltu7fsI7+rXy/ManJ9O3fwrf/OI6jP/M8Awe3cPOVq/Pic/048Kgp/PjKR1h7g45+y6Se6K4bVuOTB23Gv/88gsGrL2DXN06jb78WLj1/JP9zwOa8+NySP2DddeNqXPH7NYio6UtR9Rhjt5zGTy+6ibe+90nmzw9uuXYkD907lCFD53HE0U91d/fU/TaJiPsbPTp6gcy8EdiHIpv8GuCdwH5AC3BVu
VauV2ZjuXa/3kP6QzT6I9TZ1BjohTgVOA92fm+d3bm8VFxBjgceDachTmirx3Ak9m5pgVed+e6N3HPc9WO8/kgdsH8YWjNmb2zN4AHPmRF/noqc9xwhlPc/LbxnZzL7Uymj0z+NYnNmTOrN4c/ZmJvPekiQBkwi/+d10uPGcU3z9xNKf9bnzD8+fODn7wufXZcPNZDB6ygAduX61hO6mt1YfP5X/P/i/9Byzga8dvz3+uHbXI8c22frmbeqbOSoKWmqZlq16zDhHxLuA84BbgXcD9wLrAZ4ETgf0iYs/MXOGZJDPIUhfq07eFw98/CYAffXG9V4NjgIt/NpLx9w9g+z1fYey27X0gVk924z+GMeXFvqy/yWyOOXHiq/sj4P1feI61Rs/hjmtXZ9z9Axqe/5sz1+K5x/vz6W89Qx8redQJx3xsHEOHz+OX399sseAY4JH7h3ZDr7SSGZeZWzd6dOTkiNgUuACYBByambdm5iuZ+WhmfpSi9OI1FFO7Acwot4PaueTgcjt92Z7OogyQu9ezFCMy39vdHVHX2HqXmaw2tIXnHu/HuPsW/zd9/d+GAbD7AdNWcM+0Knj0noEAbLv7DHq1ebfu0xe23qX4RvHmKxYPVh5/cAAX/mQUBx71kjXH6pR+/Rfw+kMmMGtmb666ZN3u7o5qsCB71fqoyVFAX+DyzJzR4Pgfy+3rym1rXc/67Vyvdf+TdXSuqUssVnblKMyHursf6jo
zULgMfuHdjweOv+jbacvcL6pFXH7JnFf0SrDW08EG/14cX+8Q8s+vpqaYGzTh7N4NUX8MEvP9e1nVTT2XSraQxabQH3/XcYc+f0Zue9JrHj7pPp26+FZ58cxPVXrcVLLzb+1kIrn4QuWEmvFq0BbXv1Oq37h5fbu8vtNhHRt8FMFq8pt/fU0blVNoMcEaMj4gcR8Ui5FvdLEXF7RJwSEasv5dyxEXFqRNwcERMjYm5EPBMRv4qIhsNyI2LDiPhJeb+Z5f3uj4ifRsTmbdpuExG/jojxETG7XCf8rog4MyLWqbQbExEZEde0c8/dIuL3EfFsRMyJiAkR8c+I+HCbdjtExOkRcUd5rznlvX8cEX7870Yj15sLwIsTGn+/Pancv9b6c1dYn7TqGLrGfABeeKZfw+MTn+rX8Pil563Jg3cM5sNffe7VIFrqqA02Lr5xeHlKP75yxl18/Ud3csQxT3HoO57hoyc9wi/+eiP7HDShm3upJtBaN7ZzO8dbFwh5AiAzHwceBAYCb2rQ/m3l9tI6OrdKBsgRsTfFJ4RPUaTnLwVuBIYCpwIbL+USHwK+SlGvchvF6ivTgPcAt0XEInPoRcRoivn1Plbu+jtwLcUk1x8G9qi03am85tEUdTB/pSg+7wscBywSTC/hOR4H3EQxonMCcDFwH7AN8J02zT8PfKb88w1l/wL4OHC7QXL3GTi4BYA5sx
U2vNEA4cbBCjxW27exGo3PrP1Xl5cu9Fjk2a0Jf/Xl8M1p41Y+Hr68Xn+nL+t9dhuz2ns
p6y4zqpprLZ6kZjb7XUvstOekzn7tC046vX7cOwhr+XCCzZkwMAWTvj6/Wy8WS2lnupqCS0ZtT5qSiH/tdy+LiI+Xj0QEbuzMK65sHLojHJ7ekSMqrQ/EjgceKxy3eWyypVYRMQI4CJgGHAScEZmtlSO7wEs7TvFvwA/LT+NVK/9fuBc4Ezg9ZVDHwJGAD/KzE+1OWcDiuC31aeBAcBnM/N7bdpuQftfJVTbvQ74PkVB+hGZ+c/KsT7AAW1O+SlwXHXZxYjoBXwZ+BrwDRYWuUtaRey0z3TGbjuTx+4dxJeP2YRPnPYMG242m8cfHMAPPjeaBfOLkeRR+fz1oy+uz7y5waf+X3tThUpLFuUEBX36JueeOZa
Wk0UGSRzj1zM9ZaZzZ7H/A8b33fE3znS9t2X0e1SsvM/0bEdylmrPhxRHyCYu7jdSkSj72An2Xm1ZXTzgUOAY4AHoqIfwJrUkwVNws4JjPn19G/VS5ApghWR1IUdX+37cHMvHlpF8jMW9rZf15EfBDYNyKGZmZrMDuy3F7d4Jy2k0EuqW1H640/T5EB/mY1OC6vMZ8iQ1zd9+8G92oBvh4RH6H4VLXcljC34SZ1XL8ZzXqliFz6D2xpeHzAoJayXe+Gx9WzRcBXf/k4X3nPxjxy9yCOe9PCCrDhI+dxzIkTueDb67xao3z934Zyy5VDeffxE9lgU+fX1rKZPWvh+9GVDQbpXXXJuux9wPNsu5PfUKwaovYaZGqa5i0zT4qImyi+od+J4lv26RTf0v88M3/Xpn1LRLyd4hv5DwCHUsx/fBFwSmY+UEvHWDUD5DeW258uz0UiYjWK9bp3oMgOt2aB16H4m9+EhcsW3lFuT4uIBcDVmdneqKo7gIOBsyPiy8ANnfk0U2aI9y1
FknzluDIhDehiK73voO1xdYIyJGVFaj0Qry4rNFbejIdRqtiglrlvufb6fGVFp
Xn85KqHufEfQ3ng9sHMmd2LMZvNZr8jp3Dj34vZKzbcvHg7+s9Vxc93Xj+E+/6z6JzH4+4vBvL9+MvrMXj1FvZ/x0sc8E7fErS4FyYUA/Bmz+rFtCmLvzc9/1xxfOgIx05o+WXmn1m4nHRH2i+gKLU4Y2ltl8eqGCCPLrfjlvUCEfF64PcszPY2Ul2J5XyKsoZ3UNQ7z46I24DLgXMzc2Kl7XeA11IEuf8GZkTEzcDfgPMrWen2rEFRgP5SZnbo43k50fbPWLjKTHvPZ7n+N2xvbsMys7zV8ly7WbXOLjB221kNj7fuf/xBR4Srfb37wOsOe5nXH
o28cDtxfTfm6/56IzJD14x2DaM+7+Y
B7fZoNKuSBOMeKv7769e/hT59W5g
9Hs45DVi5xPdV53
wSaKl5qemesC7nKjlIb3mUmeM/UtSsfJ0isBsM9MrMAFrT+a9+f5CZCzLznRRTiHyNYhDebsA3gUciYs9K22kU9ct7A6dT1NO8nqKu+eFyYuw6n8+GFAF8P+B4YFNgUGZG+XxaS07qXUZHHXL
YOY8XIv1t1oLhtvvXiQvPebpgJwy5VLnHhFWsxLL/Thhr8NY/Xh89nr4KkAfPbMp7jiubsaPloD4u/9+VGueO4u3vPZiUu4unqyFycOZNzDq9GrFw3LKLYp9417yPetVcUCotZHT7AqBshPl9tlrXvdmyJLe1FmnpKZD2bmzMxs/UDU7gwYmXlnZp6ama+jyD5/nyIze2abdpmZN2Tm5zJzN4qC898Ba1EE1UsyiaLQfEREDOvA8zmEIjj+QWaelZmPZWY1ElvajB7qQvPn9eKS89YE4JOnPUP/gQtnqzjyIy+y8dazufumwTx2b3sLA6mne+KhAcydveh/SC8+15dT378RM2f05iOnPEv/gT0hn6MV6aLzxwDwoc88wvA1F9azb7zZdI58T7EOw98vbG+9BmnVtyqWWFwN7A98hGI2is5qnXB6sSHeETGWhRNNL1FmTouIL1Bk
dZStsXIuJUinXGl9Z2QTkv8sEUz/H0pXRlSc/ndRRBu
Rb89aix33nsHWu8zkvBsf4r5bBzNqvXlsudNMpk7qwxknjF76RdRjXXjOKG78x1DGbjuTEaPmM3VSH+6
TDz5vTi3cdPZP93OFBK9bvm8nXYcY/J7H/4BM656CYevHsY/fsvYMvtX6Zf/xb+cdF63HC1/72sCpLoghKL5s8ir4oZ5F9QZFkPjojjI2KRv6WI2L06N14Dj5TbIyPi1RrkMlv7Sxadsq312HsiolFgezBF6cLTlbYfi4iNGrQ9pNw+3eBYW9+mKPH5UkTs16YvfSLikMqu1udzTEQM
RbDzinA/dSF5s3pxcnv30TfvP9tZgzqxd7HDiNUevP5co/DOcTB27KxKf6d3cXtRLb88CX2XKnV3jmsQHc8LehPPHQAHbedzqnX/gY7zvZMgl1ne+fsjVnfX1LJj4zkO12fonNtpnGYw8N4Xtf3ZoffsNhJ2puq1wGOTNfKqf4uISixOHT5YC5gcCWwFhgR+CFds6/PSKuoshCP1JZxW5fisD7r8Cb25z2VuBXETEOuJeiBGIjijrkFor5hlt9DPhJRDxAseLLfGALYHtgNkXd89Ke47URcTJF9vhfEXE78ChF3fT2QH+KmSoofw/3U6xE81hE3EgxD/N+wF0Ui43si
V3Nm9+NV31uZX31m7u7uiVcyeB7/Mngcvdfr0pfrORY/V0Bv1LMEVf16fK/5sKcWqrqfUDddpVcwgk5nXUASK51BkcN8C7EWxCMdXWfoMF2+mqAV+kSILvBPFrBa7A1MbtD8DOJti
69KSaoHgX8AdgtM/9UafsViomsE3gDxVRyAyky3ztk5o0dfI7fpZj4+s/ABhRLKG5DEaCfWGk3t+zTTygC8EMpPij8kOJDQOP5xSRJktTQKpdBblWugvfxpbQ5lWLp6
7Z1Fkf
c9hhwbPmotr8OuK6D
qUDq4DnplPsITZJTLzeuD6DlxnCvA/7Rzet51z/DgpSVIPUHcNck/gb0ySJEmqWGUzyJIkSVqyBBa4UEinGSBLkiQ1raCl9kF6zV+laYmFJEmSVGEGWZIkqUlZYrFszCBLkiRJFWaQJUmSmlVCS90zu/aAFLIZZEmSJKnCDLIkSVKTSmBBzfnQHpBANkCWJElqXlF/iYXTvEmSJEk9ixlkSZKkJtZiPrTT/I1JkiRJFWaQJUmSmlSxUEi9NcM9YZCeGWRJkiSpwgyyJElSE6t/FovmZ4AsSZLUtIKWrLtgoPkDbkssJEmSpAozyJIkSU2qWEnPQXqdZQZZkiRJqjCDLEmS1MQcpNd5ZpAlSZKkCjPIkiRJTSqT2mexyB5QhGwGWZIkSaowgyxJktTEWnrAvMV1M0CWJElqWsGC2gfpNX/AbYmFJEmSVGEGWZIkqUklXTBIr9a
ZzMIEuSJEkVZpAlSZKamAuFdJ4ZZEmSJKnCDLIkSVITc5q3zjNAliRJalLFIL16A2QH6UmSJEk9jBlkSZKkphW1T/PmQiGSJElSD2MGWZIkqVllF0zz1gOKkM0gS5IkSRVmkCVJkppUUv80bz0ggWyALEmS1MxcSa/zLLGQJEmSKswgS5IkNTEzyJ1nBlmSJEmqMIMsSZLUpJLogqWmmz8jbQZZkiRJqjCDLEmS1MSsQe48M8iSJElShRlkSZKkJlb3QiE9gQGyJElSk0rqL7HoCSvpWWIhSZIkVZhBliRJalbZBYP0ekAK2QyyJEmSVGEGWZIkqYk5zVvnmUGWJEmSKswgS5IkNSmXml42BsiSJElNLC2x6DRLLCRJkqQKM8iSJElNzJX0Os8MsiRJklRhBlmSJKlJudT0sjGDLEmSJFWYQZYkSWpizmLReQbIkiRJzSq7YCW9HlBjYYmFJEmSVGEGWZIkqWlFF5RYNH/JhhlkSZIkqcIMsqSV2oyW2d3dBTWp6Nevu7ugJhSxcmVXneZt2ZhBliRJkirMIEuSJDWx7Akp35qZQZYkSZIqzCBLkiQ1sZYeMOtE3QyQJUmSmpgr6XWeJRaSJEnqNhExMiK+GxEPR8SsiHgpIv4bEd9pp/1hEXFtREwrH9dExJvq7JMBsiRJUpNqneatzkedY/4iYifgQeBEYB7wV+AWYATwmQbtjwcuAfYEbgT+BewKXBYRn6yrX5ZYSJIkaYWLiJHA5cBA4M2ZeUmb47u2+Xlz4LvAHGC/zLy53L8ZcBPw/Yi4PDMfW96+mUGWJElqVllM81bno8YU8teANYGT2gbHAJl5a5tdxwG9gXNag+Oy3SPANykSv8fV0TEDZEmSJK1QETEQOAZ4BTivg6e11hlf2OBY677DlrNrgCUWkiRJTW0lncViZ2AIcENmzoqIg4H9gQHAI8AfM/O51sYRMQzYoPzxzrYXy8ynI2ISsGFErJ6Z05ancwbIkiRJTSu6IEAOgE0i4v5GRzNz6w5cZKty+0JE/AV4c5vjp0XEBzPzd+XPrcHxlMx8pZ1rPkNRsrEhcG8H+tAuSywkSZK0og0vt4cDBwGfAEYBYygG4g0ELoiIHcp2q5XbmUu4ZmvgPGR5O2cGWZIkqYm1dE2JxbgOZo
05qk7QN8KTN/XDl2UkRsCLwdOAk4ejnus1ydkyRJklaUGZU/Nxqk17pvnzbtBy3hmoPL7fTl6BdgBlmSJKlpJeXUbDVfswZPltuZmflig+NPlNtR5fapcjs8Iga3U4e8fptrLzMzyJIkSVrRWmeiGBgR/RscH1FuZwBk5lQWBsk7tm0cEaMpBug9ubwzWIABsiRJUlPLjFof9fQpnwLuppgSY58GTVr3Vad0+1u5fVuD9q37Lq2jfwbIkiRJzSq7IECur2Tj9HL73YhYp3VnOXPFieWP51TanwUsAD4WEbtX2m8KfAmYX7ZZbtYgS5IkaYXLzN9GxAHA+4AHIuImiund9gT6Az/PzD9V2j8cEScBZwDXR8RVwFzggPK8T2fmY3X0zQBZkiSpidU8Rq9u7wduBD4K7EvR3f8CP83MC9o2zszvR8RjFNO/7V3uvh04PTMvq6tTBsiSJEnqFpmZwM/LR0fPuZSaao3bY4AsSZLUxOpfa
5OUhPkiRJqjCDLEmS1MxW8iLklZEZZEmSJKnCDLIkSVITswa585Y5QI6Ic5fjvpmZH1yO8yVJkrQUCWTNJRY9oWJjeTLIxy7HuQkYIEuSJGmlszwB8n619UKSJEldILqgxKL5SzaWOUDOzGvr7IgkSZK0MnCQniRJUrNKoO4Mcg8oQq49QI6IPsCbgF2BNYH/ZOa55bF1y30PZOb8uu8tSZIkLa9aA+SIeC3wa2A0RYFKAn2B1hkv9gD+CLwduLjOe0uSJGlxdc9i0RPUtlBIRGwFXA6sA/wQeAeLV3FfCswE3lrXfSVJkrQEWfOjB6gzg/wVYABwSGZeCRCxaHycmXMj4
AjjXeV5IkSapNnQHyfsCtrcHxEjwLbF/jfSVJktQOV9LrvNpKLIBhwNMdaDeYoi5ZkiRJWunUmUF+ARjbgXZb0rFAWpIkScurh9QN16nODPK/gB0iot0V9iLiCIog+qoa7ytJkiTVps4A+VvAXOAvEfHxiFi79UBEDI+IDwC/BF4BzqjxvpIkSWpHZtT66AlqC5Az8yHgXeU1f0QxGC+B9wGTgJ8D/YGjM/Pxuu4rSZKkdtQ9xVsPmeqtzgwymfkXYBuKeZAfAmZTZJXHAz8FtsvMS+q8pyRJklSn2peazswngePrvq4kSZKWRc8oi6hTrRlkSZIkaVVXewY5IvpTLCW9N7Buufs54AbgosycXfc9JUmS1I4eUDNct1oD5Ih4I3A+sA6L5/M/ApweEcdmptO8SZIkaaVUW4AcEbsBlwH9gP8AvwOeKA9vSDHDxe7ApRGxT2b+p657S5IkqR1mkDutzgzy/1IsIf3xzPxpg+M/jIiPAOcAXwcOrPHekiRJUi3qHKS3G3B7O8ExAJn5M+A2ikyyJEmSulpGvY8eoM4AuQV4rAPtHsNkvyRJ0gqRWe+jJ6gzQL4V2K4D7bYr20qSJEkrnToD5K8Am0bE1yJisetG4WvApmVbSZIkdTWXme60ZR6kFxHv
D7AuDLwHsi4iLgyXL/hsCRwBjg58DmFDNdSJIkSSuV5ZnF4nwaf44IikD4xMrxakX3R4APA79ajntLkiRpabpiYF0PGKi3PAHy1+kxiXZJkiT1FMscIGfmqTX2Q5IkSV0gTGd2Wq1LTUuSJGklY4DcaXXOYiFJkiSt8mrPIEfEa4E3U0znNoRFB+i1ysx8Q933liRJUhs9YFBd3WoLkCMigF8C72NhUJwsGiC3/myyX5IkSSulOkssPgYcC9wB7A9cXO7fHDiYYlq4FuA7wMY13leSJEntcaGQTquzxOJY4BXg4MycHBHHAGTmo8CjwBUR8XfgD8BNLFxERJIkSVpp1JlB3hK4KTMnlz8nQET0bm2QmRdSZJg/W+N9JUmS1B4zyJ1WZ4DcC5hc+XlmuR3ept2jwLY13leSJEmN1B0c95Aguc4A+Vlg3crPrSUUO7Zptxkwv8b7SpIkSbWpswb5v8AbIqJ3Zi4ArgS+DZweEe+iCKA/BuwE/LPG+0orvX4DWjjqUy+wz+FTGLXePKZP7c3t1wzhgtPXYfLEvt3dPa3knnl0ABeetT733rQ6M6b2Yfioeez0him888RnWH3EovmGcfcM5varhnP3dUN5+tGBzJ3Vi6FrzmPr3afx5o9PYMxWM9u5i7SoTbecyluPGc9W27/E0OFzmT2rN0+MG8JVl47m6svWp/EsrlopOc1bp9UZIF8CvBN4E3BJZt4dEb8HjgLur7SbD3ypxvtKK7W+/Vv49h/HsdXOM5k8sQ83X7k6a60/jwOPmsJub5zOcYeOZeJT
u7m1pJ3Xvj6vy/YzdnzqzerDd2FpvvNJ2nHx7E5ReszW1XDuf
fV+1lh3LgAL5sPJhxQVbKsNm8fmO01nwKAWHr9vMNf9eSQ3/W0Njv/BY+xx6Evd+ZS0Cthzvwl8/ht30rtP8thDq3P/XSMYOnwuW+/wEtvsMIUddpnEd09p+wWx1DxqC5Az83cRcTGLlk+8D7gHeAtFLfIjwOmZeWtd911ZRcSpwCnA+zPz/HLfNcA+wEaZ+UR39U0r1ruPe56tdp7JA7cP4gtHbczsmcW41SM/8iIfPfU5TjjjaU5+29hu7qVWRnNm9eLMT45lzqzevP34Zzjqs88AkAm/+sYGXPLTdTn7pI356m8eevWcsdvP4K2ffpad3jiF3uUQ6ZYW+P131+eiH6zP2Z/dmK33nLZY5llq1at3C/9z8n307pOc/pUduPbK9V49NnrMdE7/2c3sd9BzXHnJaO65Y81u7Kk6KnpAzXDdal1qOjPnlOUVrT/Py8xvZebumbl5Zh6WmdfXeU9pZdanbwuHv38SAD/64nqvBscAF/9sJOPvH8D2e77C2G392luLu+XvI5j6Yj/W3WQW7zjhmVf3R8DRn3+aUaNnc/e1w3jigUEA9O4D3/7bfex64MLgGKBXL3jXSc+w7iazmDWjD3f8c9gKfiZalYze8BWGj5jL008MXiQ4Bnj6iSH8+/Ji36Zbvtwd3ZNWiFoDZC3Veymmw3u2uzuiFWPrXWay2tAWnnu8H+PuG7TY8ev/NgyA3Q+YtoJ7plXB+HsHA7DVbtPo1ebduk/fZIudpwNw6xVtJwtaXARsuGXxQWzK8/3q7aiayrx5HQsNp
s+IlVhjNYdJoB8gqUmU9l5kOZOa+7+6IVY+OtZgHw2L0DGx5v3
RlrNXWJ+06pg9s3iLXm3ogobHVxtelEm0ZpCX5oWy1n3YSN+C1L6Jzw7iuacHMXrMK+xzwKL5nNFjprPfQc8y/eW+3HTt2t3UQ6nrLXMNckSMX477ZmZushznrzQi4nDgC8D2wCzgmvLnRm2voUENckRsCHweeAOwPjAbmADcAJyRmQ+3uc5o4CTgIGB0ed/xwKXA9zNzWqXtIOBEigGUmwBzgbuBH2fm75fnuWvpRq5XDJ56cULjTMukcv9a689dYX3SqmP1NYoA+MVnG2d8X3i6CHgnPbv0QZ4P3jqEcfesRp9+Ley479Ta+qjm09ISnPH17Tn1e7dx8v/exZFHj+fZpwczrByk99Tjq/H9r2/PjGl+E6HmtTyD9MbU1YlVVUR8DPgJxRcO11MEtbsDt1IEqx25xmiKKfJGUCyi8negN7Ah8GHgZuDhSvu9KWYMGQY8Ud5nILAFcCrwV+Cusu0Q4N8UU+u9CFwGDAZeD+wdEXtk5nHL8tzVMQMHtwDFYKtGWjOEAwc3zhCqZ9tqt2lc/MP1uOOfw5n2Up9FBtZNntCXe64bBsCsGb3buUJh5vTenH3ixgAc+qEJDF/LDLKW7MF7RvC5j+/Bl799B2O3mMbYLYq8y7y5vbjr1jWZ+GzHvrXQysFBep23zAFyZvbo8owy6/t9YB5wWGZeUe7vC5wHHNPBS32IIjj+UWZ+qs09NgD6Vn4eAVxEERyfRJFdbqkc3wN4rnKJ0yiC438Db87M6WW7LYBrgU9HxFWZeVkHn/P97Rxqim8DpJXNDvu8zM
zmD8vavxjfdswYe/8Tj
zaLpx4axDmf24gF5eeqWMK78YIFcOanxjLh8YFsusOMV2fCkJZknwOe5fgv38ND9w3j9K/syJPjV2ONkXM48ujxHHn042y302RO/NCezJ+35A9n0qqqRwe5y+kDwADgd63BMRQzdwDHsXCp7aUZWW6vbnugrFkeV9n1obL95Zn53WpwXLa/OTNfAIiIwcAHgRbgf1qD47LdQ8A3yh/NIHehWa8U/8T6D2xpeHzAoJaynf/JaHERcNLPH2H05jMZd/dqfP6wbTlm81354pu3Ydrkvq/ObLHa0PanbPvZFzbijquHs+4ms/jirx6ibz9TSVqydUe/wme+ejfTXu7H107chUceGMac2X147unB/Ohb2/Kf60cxdotpHHCYH7ZWGRn1PnqAOhcK6Wn2LreL1fFm5uSIuJJi/ueluaPcnhYRC4CrM7O9EVtvLLc/7cB1d6Iovbi9DIjb+j/gB8BeEdG
DdSGZu3Wh/mVneqgN96nFaa0dHrtP4K+01y/3PP2Mtnxobtf5cvnfFPfzn8hE8fPsQ5s7uxejNZrL3EZP4zz9GADB6s8afx
vtNFc/du1WHPdOZzyuwed+1gd8
9n6Nv3+SOm0cye9biYcL1/1yH3fZ+gW12fIm/X7xhN/RQ6noGyMtu3XL7ZDvHn+jgdc4HDgDeQVFPPDsibgMuB87NzImVtqPL7TiW
V/DfuRmVMj4mVgKMUiLpM72F91wvgHilkqxm47q+Hx1v2PPzhghfVJq57efWDPQ19izzYr4D18xxAAtt5j8WkC
LjdfjLj9dj6Jpz+ervHmTNdR0Iqo5Zc1SRo3llRuMQYeaMovJvtSHWsq8SumJqth7wRZQlFt0sMxdk5juB1wBfA24DdgO+CTwSEXt25e278NoC7r9tEDNe7sW6G81l460XD5L3ftNUAG65cvUV3DOt6qa80Je
zaCIcPnsdvBiwbOV/1mFP932oYMHjqf
zmId
xGkE1XFTJhezorS3EMimW00F4PkJjaevlJqBAfKym1Bu2/t+qVPfO2XmnZl5ama+jqLO+PvAEODMSrOny21HBsW1DtZr2I+IGEox2G8WMKUzfVXHzZ/Xi0vOK5Zi/eRpz9B/4MLZKo78yItsvPVs7r5pMI/d64hwNfbUQwOZO3vRm
Jz/Xj2x/YnFkz+vC+rz5J/4ELP+vefNkIfvaFjRgweAFf+tVDbLS1qzSqc265bi0Atn3NSxxy5KJfkm6+zRTectTjANz4r3VWeN+0jFwopNMssVh21wP7UpRG/KN6oJxt4oBlvXBmTouILwDHA9tUDl0N7A98BPjLUi5zB0Xwu1NEbJqZj7Y53jrLxo0dqT/WsvvtWWux494z2HqXmZx340Pcd+tgRq03jy13msnUSX0444TRS7+Ieqy
nRd
18OBtt8wrDR83j5cl9eei2Icyb04u3HfcM+7190qttX57UhzM/PZaWlmDU6Nlc+eu1uPLXay12zV0PfIndDvJzsRob9/BQLvr1xrz1mPF84nP38aa3PcHTjw9hxMjZbLFNsYz5P/68AXfdtmZ3d1Ud5DRvnWeAvOzOA04Gjo6I32Tm1fDqNG/fp5hveKki4j3AnZl5X5tDBwPBwqwxwC8opnc7OCKOB87KzFdf9hGxOzA+M1/IzFci4lzgE8DZEXFEZr5SttsM+HJ52g8686TVefPm9OLkt2/CUZ96gf3eMoU9DpzG9Km9ufIPw7ng9LWZNMEBemrfrge+xNQX+vLEg4N4+PYhDB46nx32ncqhH5zINnsuWns8Z1Zv5s8tvhh86qHBPPVQ47ehUevPMUDWEp37wy158J7hHHzkk4zd4mXW3/AVZr3Sh/vuXIM
jqaa69cr7u7KHUpA+RllJmPR8SJwI+AKyLiOmAixUIhw4HfAEd34FJvBX4VEeOAeymyvhtR1CG3sDCQJTNfioi3UywU8n2KeYxvo5itYktgLLAj8EJ5yhfK/uwPjI+Ia1m4UMgA4AeZ2aEFTbR85s7uxa++sza/+o5Ls6pzdjtoSoeD2VGj53DRM7d0cY/UU9x87drc7HLSzcEMcqd1WQ1yRGwaEXuU2cqmlJlnA0ewcGDdgRTLOO8OPNbBy5wBnA1Mp5g67ghgFPAHYLfM/FObe15Dsaz1ORQZ5rcAewEvA1+lMsNFOffxPsApwCTg8PIetwPvdhU9SZKkxdWaQY6I/hTB2EcosqgAF1AsqkFEHAOcAHwgM++q897dJTP/QuN64FPLR7Xtvg3Ovw64rpP3fBz4eAfbvgJ8vXxIkqSexgxyp9WWQY6IgcA1wOeAucDfKTKcVf+iyH6+o677SpIkSXWqs8TiZIoyg3OBjTPzsLYNMvM54AEWrggnSZKkLhRZ76MnqLPE4p3AU8DHM3NJ65k+TFEzK0mSpK6UQLb9Qr+Gaza5OjPIGwG3LyU4hqL8YvhS2kiSJEndos4M8iw6FvhuhCu3SZIkrRg9IONbtzozyHcBO0fEyPYaRMRGFPP03lbjfSVJkqTa1Bkg/xwYAvwuIhZbfzIihlEM4OsL/KzG+0qSJKmBoP5BejVXNK+UaiuxyMzfRcRhwFEUq7bdVB7aKyL+SrFgxerArzLzs
uK0mSJNWp7pX0jqaYB3k2cEC5b1PgMIoKmC8B76/5npIkSWpP1vzoAWpdSS8zE/hORJwBvAYYQxGEPwPclplz67yfJEmSVLdaA+RWmbmAYiCeg/EkSZK6UU9Z3KNOXRIgS5IkaSVhgNxptQXIEXFuJ5pnZn6wrntLkiRJdakzg3xsB9okxewgCRggS5IkdaWuGFjXAzLSdQbI+7WzvxcwmmJWi6OA7wOX1nhfSZIkqTZ1zoN87VKa/Coi/gZcAFxS130lSZLUPgfpdV7d8yAvUWb+DrgfOHVF3leSJEkrt4hYIyJeiIiMiMeW0vbYiLg1ImZExEsR8feI2LOuvqzQALn0KLBzN9xXkiRJK6/vAWsurVFEnAmcB2wDXA3cCuwPXBcRb6mjIys0QI6IXsB2QMuKvK8kSVKPtQqspBcRbwDeB/x8Ke3eCBwHTAa2z8y3ZOZBwOuABcB5ETFsefuzQgLkiBgUETsAv6NYenpp9cqSJEnqASJiIPBT4AHgu0tpfkK5/UZmPtq6MzNvBs4BhlHDTGl1zoO8oCPNgBeBk+q6ryRJktq3CgzSOwXYGNgHmNdeozKQfn3544UNmlwIfBo4jKJcY5nVOc3b07SfeJ8LTKDIHJ+dmS/UeF9JkiStgiJiO+BE4LzMvD4ixiyh+eZAf+DFzHymwfH/ltvtlrdfdU7zNqaua0mSJKkmXZNB3iQi7m94u8ytO3KBcmzaL4CpwMkdOGWDctsoOCYzX4mIqcDwiBiSmdM70o9GaqtBjojDI+Lguq4nSZKkpvYpYBfgpMyc3IH2q5XbmUto80q5HbI8HauzxOLPwJXAP2q8piRJkpZH12SQx3U0U9xIRGwAfAO4NjPPr61XNakzQH4RmFLj9SRJkrQ8sgsG6dVzvbOBfsDHOnHOjHI7aAltBpfbZS6vgHoD5GuAXSMiMnPlHy8pSZKk7nIoRe3xORFR3T+g3K4XEdeUfz4qMycCT5U
9/oghExmGKatynLU38M9QbIXwFuA74fEZ/PzNk1XluSJEnLYuVNWw6jmNqtkQGVY61B88PAHGBkRKyXmc+2Oec15fae5e1YnQHyu4C/UxRcHxURV1NE+o0C5czM/63x3pIkSVpFZGY02l9O8/Y4RY3z2DbnzIqIfwEHA28Hzmxz+tvK7aXL279lDpAjYjzwp8z8XLnrVIrPKAGMAt69hNMTMECWJEnqYqvAQiGdcQZFgPzliPhb62p6EbEH8FGKso1fLu9NlieDPAYYWfn5/cvXFUmSJKl9mXl1RJwFHAfcFRFXUQz2258iSfv+zJy6vPepc6GQC+q6liRJkmrSXBlkMvP4iLgL+CRFYDwXuBr438y8qY571FmDLEmSJC2zzHyCIhO8tHbnA+d3VT8MkCVJkppZk2WQV4TlDZB3iIivLsuJmfn15by3JEmSliCof5DeUtO7TWB5A+Tty0dnBMVnGQNkSZIkrXSWN0AeB9xYR0ckSZJUs6T+EoseULKxvAHyDZn5gVp6IkmSJK0EHKQnSZLUzHpAxrduvbq7A5IkSdLKxAyyJElSE2uypaZXCANkSZKkZmaA3GnLHCBnpuUZkiRJajpmkCVJkpqYJRadZxZYkiRJqjCDLEmS1MzMIHeaGWRJkiSpwgyyJElSs3Kp6WVigCxJktTEors7sAqyxEKSJEmqMIMsSZLUzHpASUTdzCBLkiRJFWaQJUmSmpgLhXSeGWRJkiSpwgyyJElSMzOD3GlmkCVJkqQKM8iSJEnNzAxypxkgS5IkNTEH6XWeJRaSJElShRlkSZKkZpXUX2LRAzLSZpAlSZKkCjPIkiRJTSqovwY56r3cSskMsiRJklRhBlmSJKmZ9YCa4boZIEuSJDUxp3nrPANkSSu11377hO7ugprUWuc/1d1dUBPK9wNPdncvtLwMkCVJkpqZGeROc5CeJEmSVGEGWZIkqZmZQe40M8iSJElShRlkSZKkZpVdMItFD8hIGyBLkiQ1sx4Q0NbNEgtJkiSpwgyyJElSE4s0hdxZZpAlSZKkCjPIkiRJzcwEcqeZQZYkSZIqzCBLkiQ1sdqneesBzCBLkiRJFWaQJUmSmpkZ5E4zQJYkSWpWrqS3TCyxkCRJkirMIEuSJDWzHpDxrZsZZEmSJKnCDLIkSVKTCuqvQY56L7dSMoMsSZIkVZhBliRJambWIHeaAbIkSVITcyW9zrPEQpIkSaowgyxJktTM0hRyZ5lBliRJkirMIEuSJDUrl5peJmaQJUmSpAozyJIkSc2sB2R862aALEmS1MSipbt7sOqxxEKSJEmqMIMsSZLUzCyx6DQzyJIkSVKFGWRJkqQm5lLTnWcGWZIkSaowgyxJktSskvqXmu4BGWkzyJIkSVKFGWRJkqQmZg1y5xkgS5IkNTMD5E6zxEKSJEmqMIMsSZLUpIL6Syyi3sutlMwgS5IkSRVmkCVJkppZ3dO89QBmkCVJkqQKM8iSJElNzGneOs8AWZIkqVkl9U/z1gMCbkssJEmSpAozyJIkSU3MEovOM4MsSZKkFSoiBkXEWyLilxHxcETMjohXIuLuiPhqRKy2hHOPjYhbI2JGRLwUEX+PiD3r7J8BsiRJUtNKaKn5UU8R8ruBPwMfABYAlwDXAxsBXwNui4hRbU+KiDOB84BtgKuBW4H9gesi4i11dAwMkCVJkrTizQN+BmyVmVtl5jsy8yBgc+BOYAvgzOoJEfFG4DhgMrB9Zr6lPOd1FEH2eRExrI7OGSBLkiQ1s6z5UUeXMi/IzI9m5oNt9k8APlH+eGRE9KscPqHcfiMzH62cczNwDjAM+GAd/TNAliRJamKR9T5WgLvLbX9gDYCIGAi8vtx/YYNzWvcdVkcHDJAlSZK0Mtm43M4DXi
vDlFwPxiZj7T4Jz/ltvt6uiA07xJkiQ1qwSy5rRvcblNIuL+hoczt17OOxxXbi/PzDnlnzcot42CYzLzlYiYCgyPiCGZOX15OmAGWZIkSSuFiDiEoo54HvCVyqHWad9mLuH0V8rtkOXthxlkSZKkJtZFdcPjasgULyIitgB+DQRwUmbevZRTuowZZEmSJHWriFgPuBwYDpyRmWe1aTKj3A5awmUGl9vlKq8AM8iSJEnNbSVfajoiRgBXAhtSLALy2QbNniq367dzjcEU07xNWd76YzCDLEmSpG5SLin9D2Ar4GLgw5kNRxU+DMwBRpbZ5rZeU27vqaNfBsiSJElNLDJrfdTWr4j+wF+BXYErgHdl5oJGbTNzFvCv8se3N2jytnJ7aR19M0CWJElqZi01P2oQEb2B31Es/nE9cGRmzl3KaWeU2y9HxKaVa+0BfBSYCvyyjv5ZgyxJkqQV7ZPAEeWfJwE/johG7T6bmZMAMvPqiDiLYp7kuyLiKqAfsD/FzBfvz8ypdXTOAFmSJKlJFctD1ztKr6Zp44ZX/nxEu63gVIoAGoDMPD4i7qIIsPcH5gJXA/+bmTfV0jMMkCVJkrSCZeapFMHvspx7PnB+fb1ZnAGyJElSM1vJp3lbGRkgSytAvwEtHPWpF9jn8CmMWm8e06f25vZrhnDB6esweWLf7u6eVnLH7HI3O46ewKYjX2L4oFn07zOfSa8M4o6n1uWC/+zAYy+usdRrnHPUJey+0bMAHPCj9/DC9NWWcoZ6jKkL4PfT4ebZ8MJ86B+wVh94TX/46LDF22fCFTPh8lfgiXkwJ2GN3rBlPzh6dRjje5pWfQbIUhfr27+F
9xHFvtPJPJE/tw85Wrs9b68zjwqCns9sbpHHfoWCY+1b+7u6mV2Af3/C8D+87j0RfX4NEXRwCwyZovcdi2j3DQVo9xwsUHcv1jY9o9
BtH2L3jZ6lJaFXwzEw6rEemQufmwTTWmBMH9hzIMxMeHIeXDhj8QB5bsJXJ8Ftc2BIL9i6fxFQT5gP18yCXQcYIK+Maq5B7gkMkKUu9u7jnmernWfywO2D+MJRGzN7Zm8AjvzIi3z01Oc44YynOfltY7u5l1qZfebCg3hg4kjmLlj0Lfsdr7mPLx54PaccfA0H/ui9LMjFZ+4cPnAWJ7zhJm4aP5oxI6ay7rDlXmBKzWLqAvj8pCLo/d81iuC46qEGM259f0oRHL9pMHxiWBEct5q8AOYbiK2MahpU16M4D7LUhfr0beHw9xeDb3/0xfVeDY4BLv7ZSMbfP4Dt93yFsdvO7K4uahVw17PrLBYcA/zxv9vw1JTVWXO1WWy85pSG5560/40M6DOf067Yu6u7qVXNBdPg5Rb4yNDFg2OALfot+vNDc+HKmbBFX/jMsEWDYyjKLNYy76bmYIAsdaGtd5nJakNbeO7xfoy7b9Bix6
2zAAdj9g2grumZrF/AXF2/i8BYu/ne+58VMcsvWj/OKmnXhm6tAV3TWtzOYkXD0TBgQcNLhj5/ztlWL7ltWg8Xy1Wlll1vvoAfyoJ3WhjbeaBcBj9zbIzlT2b7Tl7BXWJzWPN23zMGPWmMqTLw3lqSmLBsAD+s7jSwdex/hJwzj/lh26p4NaeT08t6g13qZfkQn+zyy4Yw7MS1i/D+wzCNbsveg5d5bvU1v3h+fmw79mwgsLYFgv2GUAbOtYCjWPHhcgR8QY4HHgWuBwijn4jgDWB84uJ6AeAZwEvBnYiGIS6juAMzLzsnaueyRwMrAdMBP4N/AF4BjgFIrVXc5vc852wDeBvYHewJ3A/wLzyvMvyMxjK+3XAd4DvAkYC4wEXgJuAv5fZt7WTt8GUaw68w6gdWnG+4CfZOYFS/yFabmMXK+o4XtxQuNBK5PK/Wutv7TVNSV43253ssmaUxjYdx4
TmFsSOn8ML0wXz+
vT0qb++H/2vo31hk3ng79+M/NberdzRfVYT84rtsN7w1cmwU1tPqT/chp8dji8vvzma27ChAXFn++cDT+cWvxP1eo302HfgfD5EdDX7PJKJSFqWh66es1m1+MC5IqBFEHyhuX2v8CUiNiMYkWW0cATwBXAEGB34NKIOCkzv1u9UEQcB5xJsUL5dcBEYDfgVuDSRjcv1w2/GhgE3AM8AGwCXA6c3U6f3wx8G3i4PGcaRcB7BHBoRByamVe2uc8o4CqKwH1i+VwD2BM4PyJ2zsxPLfE3pWU2cHDxrjRnVuNqptkze5XtFqywPmnVtcdGT786VRvAc1OH8OXLXs+DE0cu0m6LtV7k3bvcwyX3bM4dT6+7orupVcGMMmK6aVZRbPnpYbDPwKL04i8z4I8z4NsvwQZ9YGy/he0Bzppa1Cx/YHUY0RvumgNnTClmsRj1cuOp4aRVTE8OkHcFbgY2bl23OyJas7ijKbLB38vMlvLYWOBK4FsRcXlm3lfu3xg4nSLLfFBm
vc3wf4GfD+tjeOiF4UK8AMAr6UmadVjn0Q+EU7fb4R2CYz729zvQOBSyjWMd80c5ECofMoguOzgM9l5pzynLWAy4BPRsTfMvPypf7GJHWrj/3+cACG9J/D2JGT+ehr7+DcY/7Kj67dlV/ctBMAvaKFUw65humz+3PGv
ozu5qZdYa7y4APjAU3lyZF/ujw+D5BXDtLPjjdPjiGgvbQxE0f3XEwjkDXzsQ+gJfnFwE18esDoMd4rTy6Iq64eZPIff0V/CnW4Pj0mHAtsBFmfmd1uAYIDMfA06kKIX4cOWcDwD9gP9rDY7L9vOBE4AZDe77emAz4FHgW9UDmflLikB4MZl5b9vguNx/BfAnigz0Nq37I2IH4BDgNuCE1uC4POd54CPljx9vdL+2IuL+Ro/yvmpg1ivFP7H+Axt/vzVgUEvZzq/A1XHT5/TnzmfW5ZN/PIT7J4zkf153K1uv8wIAR+9yD1uuPYkz/707U2c1rn2XGFgpgzho8QHEHFjuu3vu4u33H7z4hNq7DSxqkefSeHo4da+s+dED9OQM8oTMvL3NvgPK7cXtnHN9ud21sm+vcvunto0zc2pEXAkc2eZQ6zkXVYPwij9U2iwiIvoDB5V9GEkRnEMR2ENRcnFv+efW5/OXRvfJzDsjYkab56Mavfhs8dczcp15DY+vWe5
pl+DY9LSzK/pTdXPrgJW6/zIq8b+wT3TxjFPmOfpCXhsG0f5rBtHlmk/RqrFdMJfueIK5k3vzfn3rIjN43foDu6ru7WOh3bgIBhDT6gr10en1qWfw3uBUMCpies3c4H+rV7w9SW4iGt4npygPxUg31jyu1vIuI3Szh3zcqf1ym3T3fiPstyDhGxLUUpxZgl9G1I5c+t7b4ZEd9cwjkDlnDsVZm5dTv9uh/YqiPX6GnGP1Bk8MZuO6vh8db9jz/Yob8CaTFTZxavseGDFr7GegXsvMGEds/Zfr3nAbjk3s27tnNaeY0tBw7PyWIAXr82GeHpZZBbzRxv0q+oN57eTgA8PRc/RyuF6CFTs9WpJwfIjebVai05uRx4fgnnTqq/O0sWEQH8kSLoPad8jAdmZGZGxGkUs2ZU35lan88NwLgV11u1uv+2Qcx4uRf
jSXjbeexfj7F/3Ke+83TQXglitX74beqRnstMFzADxTTvP2od++ud22f
4r1l32HQO+NF7eGH6au22Uw+wVh/YpC+Mmwf3zIGd23xIv7usyBtb+XZrzwFFgHz3HDi0zevn+fkwcX55jktNa9XXkwPkRp4pt7/IzIs6eM4EYHOKgX0PNDg+up1z2jvW3v4tysftmdmoZnjjBvtan89fMvN77dxLXWj+vF5cct6avPv4F/jkac/whaM2Zs6shUtNb7z1bO6+aTCP3dugBlACdlhvAoP6z+Pm8aPJyuffPr0W8LYdH+BN2zzCrHl9uOJBlytXJ71zCJz2EpzzMny7b7ESHsBjc+FP5fCZwyqLiBw0uJjO7ZpZsN+shavvzW4pZrZYAOw2AEYZWqx0zCB3mq/iRV0FfJBi2rSOBsg3AvsCb6WYEu5VETGUhXXAbc8BOCIivthm1gko5itua3i5fabtgYgYDuzf4JyrKOZVPgIwQO4mvz1rLXbcewZb7zKT8258iPtuHcyo9eax5U4zmTqpD2ec0N7nJAk2GPEyXz/037w0cwAPThzJy7MGMGzgbMaOnMyoITOZPa83p1y2H8+bEVZnvWEQ3D67WD76AxOLBUDmJNw/p5jj+E2DiwVDWg3uBV8YAV+eBF+dXCxFvUYveHAuTG4papA/M7zd20mrkp4+i0VbF1FkgY+OiK+UA+JeFYW9IqI6gO48inG7742I11Xa9qYISqs1wa3+RTGDxeYU08lV73EsxcIhbT1GMdHO6yNi00r7ARTlFiPanpCZ/6EIkveKiLMjYrHv8SNi+4g4qMH9VJN5c3px8ts34TffX4s5s3qxx4HTGLX+XK78w3A+ceCmTHzK1afUvtufWpdf3Pganpw8jE1HTm
Lcaxw/oTmDa7P7+9fVve/st3cuVDZo+1jE4eDicMg3X7FKUTD82FTfuV+xsEu7sMgB+PKqZ2e24+3DK7qF9+62rF/pHOyLPSSYrooc5HD0hIm0GuyMz5EfEWikzw1ynmCL4HeIFiYN4OwCjgM5RZ4MwcFxEnUywU8u+IuJaifnlXiqD11xSr6c2t3KclIt5HsVDItyLiXSxcKGQXioVCPtHmnBci4pcUU8zdHRH/AmaxcBW+84FjGzytYyhqqv8HeHdE3AU8BwylmB95NMUcyc6D3IXmzu7Fr76zN
6ztrd3RWtYp57eXV+dN1utVzrkJ8cU8t11EQi4E2rFY+O2qQfnLpG1/VJWgmYQW4jMx8FdgS+TFHOsDvFNG2bUSwi8gmKoLd6zlnA24Dby/YHAndRrKbXOhhwcptzbqZYze4yiuWsD6f4UusQigVMFjuHYr7iEymWyn4DRXB8NbAz8GQ7z+eF8j6fpgjCdyz7uh3FIL+TgO82OleSJK36IrPWR0/Q4zLImfkEi8700KjNy8A3y0dHr3sRbeqWyzKLPSm+jLi7wTl3UyxOQpvzzin/eFeb9guAM8pHW6eWj0Z9mw38sHxIkqSepIcEtXUyg1yDiNgkIoa12defYgnqrYB/ZubENsdHRMSYBtd6J/AhYCpFdlmSJEkrUI/LIHeRtwNfi4g7KB
WB3YnmJBkEnAJxucsxlwc1njPL7ctyXFwL0FwEcz85Wu7rgkSWpyZpA7zQxyPf5JsTz1OsCbgP0oBtD9BHhNZj7c4JzxFIPx+pbtD6UYOHcxsHdm/nEF9FuSJEltmEGuQWbeBryrk+e8QOPMsiRJUn3aWR1c7TODLEmSJFWYQZYkSWpWXTE1Ww+oaTZAliRJamY9IKCtmyUWkiRJUoUZZEmSpGZmBrnTzCBLkiRJFWaQJUmSmpkZ5E4zgyxJkiRVmEGWJElqZi4U0mkGyJIkSU0qktrnQY4eULFhiYUkSZJUYQZZkiSpmTlIr9PMIEuSJEkVZpAlSZKaVkJL3Rnk5s9Im0GWJEmSKswgS5IkNTNrkDvNDLIkSZJUYQZZkiSpmZlB7jQDZEmSpGaV1B8g94B42xILSZIkqcIMsiRJUjOrfZq35mcGWZIkSaowgyxJktS0ErKl/ms2OTPIkiRJUoUZZEmSpGbmNG+dZoAsSZLUrJL6B+n1gHjbEgtJkiSpwgyyJElSM7PEotPMIEuSJEkVZpAlSZKamRnkTjODLEmSJFWYQZYkSWpmZpA7zQBZkiSpaSW0uJJeZ1liIUmSJFWYQZYkSWpWSf0lFs2fQDaDLEmSJFWZQZYkSWpmDtLrNDPIkiRJUoUZZEmSpGbWYga5s8wgS5IkSRVmkCVJkppUkmTWOw9y9oBpLAyQJUmSmlVSf4lF88fHllhIkiRJVWaQJUmSmpnTvHWaGWRJkiSpwgyyJElSM2upd5BeT2AGWZIkSaowgyxJktTMrEHuNANkSZKkZpVJ1l1i0QMCbkssJEmSpAozyJIkSc2sB2R862YGWZIkSaowgyxJktTM6l5qugcwgyxJkiRVmEGWJElqZulCIZ1lBlmSJEndIiIGRsTXI+KRiJgdEc9FxLkRsV539ssMsiRJUrPKJOuuQa5pVoyIGAD8C9gdmAD8FRgDvB84NCJ2z8zxtdysk8wgS5IkNbNsqfdRny9TBMc3A5tl5jszczfgRGAkcG6dN+sMA2RJkiStUBHRD/hk+eMnMnNG67HMPAO4B9gnInbqjv4ZIEuSJDWxbMlaHzXZCxgKjMvMOxscv7DcHlbXDTvDAFmSJEkr2vbl9
tHG/dv90K6MtiHKSnOoyeyQxuziu7ux9qQvN/fX13d0FNavxf53V3F9SEZj73MsDo7u5Hq5nM4OaWy2u/JrBJRNzf6Hhmbt2By2xQbp9p53j
g0717t6GCCrDjOTFl5h2tPd3ZFVwCbldly39mJV8tK07u7BqsLXVifNeam7e7DK8LXVOaOBmd3didK48v/n
j28n4IWK3ctve7eqXcDlnO+ywTA2Qtt8xcu7v7sKpo
TdwU/XUof52lJX8bW16srMw7u7D6sqa5AlSZK0orXOWjGoneODy+30FdCXxRggS5IkaUV7qtyu387x1v1ProC+LMYAWZIkSSva3eX2Ne0cb91/zwroy2IMkCVJkrSi3Qi8TDEbxg4Njr+t3F66wnpUYYAsSZKkFSoz5wI/Kn88OyJaa46JiBMo5j++NjPv6I7+RWZtK6JIkiRJHRIRA4BrgN2ACcD1FPMe7wa8COyemeO7pW8GyJIkSeoOETEQ+ALwboq5lV8CLge+kpntLSLS9f0yQJYkSZIWsgZZkiRJqjBAliRJkioMkCVJkqQKA2RJkiSpwgBZkiRJqjBAliRJkioMkNXjRMSpEZERcWx396WRiBhT9u+a
h3RsQTK/q+PV2j12REXFPuG9N9PZOknskAWZIkSaro090dkLSYZ4EtgZnd3RF1q/cCgyheD5KkFcgAWVrJZOY84KHu7oe6V2Y+1d19kKSeyhILNZWIGB0RP4iIRyJiVkS8FBG3R8QpEbH6Us4dW9aC3hwREyNibkQ8ExG/iojN2jlnw4j4SXm/meX97o+In0bE5m3abhMRv46I8RExOyJejIi7IuLMiFin0m6JNcgRsVtE/D4ino2IORExISL+GREfbtNuh4g4PSLuKO81p7z3jyNi3Q7/UlWbiDi8fH3NjIjJEXHREl5bDWuQO/OaK9t3+N9ERAyKiK9ExH1l25cj4rqIOKrWX4Q6rPp+EBGrR8QZEfF4RMyLiDPLNiMi4v9FxAOVv7d/RcShS7jukRFxS/kamhQRf6q8BzYcoxER20XEpRExNSKml6+N/SNi3/Kc89u0XyciTo6Ia8v3q7nle+vFEbHLEvo2KCK+EBF3RsSM8nFLRLxvmX+RUicZIKtpRMTewD3Ap4C+wKXAjcBQ4FRg46Vc4kPAV4HBwG3AJcA04D3AbRGxXZv7jQb+C3ys3PV34FpgDvBhYI9K253Kax4NTAf+CtxS9vM4YLHApp3neBxwE/BOYAJwMXAfsA3wnTbNPw98pvzzDWX/Avg4cLtB8ooVER+j+HvfjeK1cBWwE3ArsEkHr9Hh11zZvsP/JiJiCHAd8HVgFHBZ2XZX4HcRcVbnnrFqNpDi7/pY4C6K96cp5Qesuyj+vQ8ErgBup3idXRoRn217ofJ95CJgF+A/LPpa3KjRzSNiD+Bm4FDgSYrXxwDgcuDIdvr8ZuDbwFoUr8M/A88BRwA3RsQBDe4zqrzPacDa5XO+DtgCOD8iftjOvaR6ZaYPH6v8AxgBvAAk8FmgV5vjewCjyj+fWrY7tk2b3YGNGlz7/WX7f7XZ/7Vy/w8bnLMBsEnl5wvKtic2aLsFsE7l5zFl22vatHsd0EIRtL+hzbE+wCFt9u0HrNVmXy+KDwEJnNugLwk80d1/n832ADYEZgFzgQMr+/sCvy5/74u8JoFryn1jlvE11+F/E+XPP2x9nQND2rw+ny+PHdrdv8ue9qi8HyTFh+NhlWO9KQLPBE6q/h0DY4HxwHxgm8r+jSk+UM0B9qvs7wOc285rsRfwcLn/i23698HKOee3ObYtsHWD53Rgef/HgGhz7G/ltc4E+lf2r0XxwTKBg7r778VH8z+6vQM+fNTxAE4u3zj/0YG2p7b9D6AD59xQBqdDK/t+XF7nzR04/+9l2+070Lb1P8Rr2rnG52r4fT0DTGqw3wC5Cx6VwPaCBsfWAF5pEJRcw+IBcmdec535NzGYYlDoAmCLBsc/VV7rqu7+Xfa0R5sAeec2x95S7r+wnXOPKI+fVdn3jXLfLxq0H0bxDVfb1+Iby32P0OaDVnn8hkYB8lKeV+sHw20r+3Yo993azn12LI
tbv/Xnw0/8NBemoWbyy3P12ei0TEasBhFG/UIygyfADrUJQnbELxFTfAHeX2tIhYAFydmbPbufQdwMHA2RHxZeCGzJzfiX71AfYtf/xZJ85bAzicogRjGEXGCYrntUZEjMjMlzp6PS2zvcvt79seyMzJEXElRbCzNJ15zXXm38ROFF/P356ZjQaI/h/wA2CviOiVmS0duKbqNSEzb2+zr7VE4eJ2zrm+3O5a2bdXuf1T28aZObV8LbYtmWg956J2/u7/UGmziIjoDxxU9mEk0K88tG253RS4t/xz6/P5S6P7ZOadETGjzfORuoQBsprF6HI7blkvEBGvpwhgRi6h2ZDKn8+neEN/B0Vt5+yIuI2iJu/czJxYafsd4LUUQe6/gRkRcTPF14nnZ+bLS+neGhQBzEuZOaWDz+ddFMH0akt5PgbIXa+13vvJdo4/0cHrnE/HX3Od+TfR2r+G/SgDp5cpapeHA5M72F/Vp9GsJmPK7W8i4jdLOHfNyp9bBwQ/3Yn7LMs5RMS2FLXSY5bQt+p7amu7b0bEN5dwzoAlHJNqYYAs8Wrm+I8UWeOvUwTKTwKzMjMj4rfAuyiyyABk5gLgnRHxLYrBKK+nGBizN/D5iDgoM28q204rA/C9KDLU+5bt9we+EBF7Z+ajNT6fDSmCKYDjKQLxZzNzVnn8Jooa1Gh0vlZOnXnNdcXtu+i66phG3xS0DrS/nKJOvD2T6u/OkkVEULynjgHOKR/jgRnle+ppwBdY9D2o9fncwHIkO6Q6GCCrWTxNMZhoExZ+XdcZe1NkaS/MzFMaHG93BozMvBO4Ezi1nD
VIrZI86k8lVgZibFG/8N8Opo7TMpAu9vUmQF2zOJYpDXiIgYlplTl/J8DqH4KvO7mdlo9oGlzeihek2gmKlkQ+CBBsc37MzFOvia68y/ieeW1I+IGEpRojML6NA3GFohnim3v8jMizp4TutrcTSNX4ujG+ybsIRj7e3fonzcnpkfb3C80XtQ6/P5S2Z+r517SSuE07ypWVxdbj+yjOcPL7fPtD0QEWOB13TkIpk5jSIrkhR1v0tq+wJFYEMH2i6gGLQFHXuOS3o+r6MYEa4Vp7UWdLEPQRExgoW1l522hNdcZ/5N3EER/O4UEZs2OH5Mub3R+uOVylXl9ohOnHNjuX1r2wPlB6FGr8XWc44oM8NtNfpwv6T3oOEU3561tSzPR+oSBshqFr+gyLIeHBHHt30Tj4jdy4xtex4pt0dGxKs1yBExDPglCwfrVa/5nohoFNgeTPG14dOVth+LiEbzix5Sbtur7av6NkUQ9KWI2K9NX/pExCGVXa3P55iIGFxptx7FV51asc6jmNbq6IhoHTxHRPQFvk8xi8RSdeY1Ryf+TWTmKxRTfPWiGEhafc1sBny5/PEHHemnVpiLKLLAR0exwEv/6sEo7BUR1QF051FMN/je8sNya9vewPdYtCa41b+ARykyzye3ucexLByEWvUYxcw
69+6IqIARTvQSPanpCZrXMy7xURZ0eDxZ0iYvuIOKjB/aR6dfc0Gj581PWgqOudRhFEjqcYWX0JxRt7AjuU7U6l8TzIV5b7p1BMaP/n8s+PAn8pj+1bad+677Gy7W8pJrhvoZgu6+2VtneVbe8HLqSocW7dNwvYq9J2DA2meSuPfba8flLMCf
st/PA1Mr7fpRLCCSFF+PXkgxsf8rFNmgG2kzhVh5ntO8dd3r8xPl73cBxUDN3wGPA1NZOOXVsZX217T9O+rMa64z/ybKtkMoFpjI8vX0R4ra9Vm0mSrMxwp93bT7flAe37T8u239e7sK+A3FgiGt81cf3+ac4yqvxX+Vr8VxFO93/1cee3ebc/Zg4XSEd5Wvvf+Ur70flft/1uacn5X7Z5bvP38CJgIvUgTqjd6HR1HMFNT6Xvzv8vlcRjEYMIEzu/vvxUfzP8wgq2lk5jXA9hTZiaCYNmsv4GWKxTGWNujjzRS1wC9SZOR2oghkd6cIYto6AzibYt7QvSm+FhxFEYTslpnVaZS+wsJJ+N9AMVBvIEWWb4fMvJEOyMzvAvtQBEcbAG+j+Fr9XuDESru5ZZ9+QjG451BgS4rFIPYH5nXkfqpPZp5N8Rq5jWJg3YHA3RSvr8c6eJnOvOY69W8iM6dTvLZOocg8H17e43aKYOm4zj1jrQhZDO7dkSLL/wzF6+lIYDOKOvVPUHwAq55zFsV7x+1l+wMpgt7dWDgYcHKbc24G9qQIVDeieH3Mo/gW7OZG51Cs2nkixQfBN1C8nq4GdqadGV2yKD3bE/g0RXZ8x7Kv21F8EDgJ+O4SfylSDSLTgcmSJPV0ZZnFPRQfptfNRacNXNJ55wAfBY7KzD90YRelFcYMsiRJPUhEbFKOr6ju6w+cDmwF/LNtcBwRIyJiTINrvRP4EMW3bJd1UZelFc5p3iRJ6lneDnwtIu6gGNi5OkUpzjoU5TWfbHDOZsDNEXEPRakDFJnmzSlqmT+axWBPqSlYYiFJUg8SEbsAJ1DUH4+kSJY9SzGw7/9l5mKz6pQznnyVYnGadSlmXpkE3EQx3
Nbc+RVmUGyJIkSVKFNciSJElShQGyJEmSVGGALEmSJFUYIEuSJEkVBsiSJElShQGyJEmSVGGALEmSJFUYIEtaqUVEtnm0RMTUiLg+Ij4UEdHN/Tu27NepbfafX+7ft1s6towi4pqy32M62L7h81/Gez8REV0+Of+q+ncjacUxQJa0qrigfPwGeADYC/g58Nvu7FRXqjP4lCR1XJ/u7oAkdURmHlv9OSL2B/4OHBURv8nMy7qlY+37AvAt4Knu7ogkqXPMIEtaJWXmVcD/lT++pRu70lBmTsjMhzJzZnf3RZLUOQbIklZld5
0a07ypKEJyKiX0R8NSIeiog5EfGXSptBEfGFiLgzImaUj1si4n3t3Sgi9oqIqyNielkDfUVE7LaE9u3WuUbE4Ij4XETcHhHTIuKVsp9nR8RmZZtrgPPKU05pU4d9bJv
Vne7+nyuT4fEb+PiK3b6VvviPhsec/Z5XlnRcTq7T2fzoqIdSLi5Ii4NiKejYi5ETExIi6OiF2Wcm5ExHER8UDZv2cj4gcRMWwJ7d8VEf+KiCnlOQ9GxKkRMaiu5ySp57DEQtKqbEi5ndNmfy/gL8DrgGuBe4DJABExCrgK2A6YWB4PYE/g/IjYOTM/Vb1YRBwK/JniPfNWYDywPXAdcH5nOhwR65T33xqYAlxT9n9j4GPAo8AjwOXl/fYC7gbuqlzmscr13gL8HuhftrmF4gPDO4DDIuLgzLyuTTd+DRwFzASuBOYD7yvvNa8zz2cJ3gx8G3iY4vc/DdgUOAI4NCIOzcwr2zn3h8BHKH439wL7AJ8C9omIvTNzWmvDiOhVPp93ATOA2yl+rzsDpwAHR8S+mTmrpuclqQcwQJa0Sipnrzi0/PGeNodHUwSdm2fms22OnUcRHJ8FfC4z55TXWwu4DPhkRPwtMy8v9w8BzqV4v/xAZp5Xuf
Az7Xya7/H0Vw/Efgg5k5o/KcxgCrA2TmtyJiIkXQ+pfMPLXB72AMRXA4Dzg0M6+uHDsIuAT4dUSMzcy55f53UgTHTwH7ZOYT5f5RwD+BnTr5fNpzI7BNZt7fps8Hlv36cURsmpmNZq14D7BHZt5RnrMa8Ffg9cDXgeM
U+kCI6vAd6VmRPLc/oBPwY+SBEof76m5yWpB7DEQtIqpSwP2JQiaN2DIhA+r0HTL7QNjiNiB+AQ4DbghNbgGCAzn6fIWgJ8vHLa24CRwHWtwXHZPoGvAM90ou+7Am8AXgA+VA2Oy2s+kZltg/0lOR4YTPFcr64eKAP8n1B8WHhT5dD/lNtTW4Pjsv0LwEmduPcSZea9bYPjcv8VwJ+ATYBt2jn9R63BcXnODIoMcgIfjIgBABHRBzgZeAU4qjU4Ls+ZW54zEfhImWmWpA7xDUPSKqG1/paiHOAR4FhgOkXWcFyb5glc2uAyB5Tbv2RmS9uDmXknxdf0u1Z2711uf9+g/Tzgwk48jTeW299l5vROnNee1udzcTvHry+3uwJERF9g93LfH9o2LoPqKTX0i/J+/SPizRHxzYj4WVknfT6wbdlk03ZObfS7foCi1GQ1YMdy92uANYGbyg84bc+ZBdwBDF/CvSRpMZZYSFpVXFBuWyjqWe8FLs7MRgHdC9XscMWYcvvNiPjmEu41oPLndcvtk+20fWIJ12mrdTBh24B+WY0pt8/GktdLWbPcrgH0A15cwuwaT1IElMslIralKKUYs4RmQ9rZv6Tf9Q4s/Dtpvfb+sfQFRtakqIeWpKUyQJa0Smg7D/JSzG5nf+u3ZjdQX5DanVqfzwVLbAX/6eqOVJX12X+kCGDPKR/jgRmZmRFxGsU80cu7CmLr83+MouZ5SSYv570k9SAGyJJ6ktZ64b9k5vc6eM6EcrthO8fb29/I0+V2k06csyTPlNc6MTM7EgBOBuYCIyNiYDszO2xQQ7+2KB+3Z+bHGxzfeCnnb0jxDUGj/QDPldvWv8+HOvkBSpKWyBpkST3JVeX2iE6c01rH+462B8pBYm/txLVaB9K9q5yZYWnmltv2khmdej5lzXRrNrnR8zkAGNGRay1Fa4nGYgMYI2I4sP9Szm/Uty0oyitmsHDKu9uAlymmf6uj35IEGCBL6kEy8z8UQeVe5aIciy2MERHbl1OktfoTReZ136gsJFKWEXyNTmRcM/NW4N/AKOBnETG4zb3HlLW7rVozpZu3c8nvAbOA70bEkQ2eS/+IeFtErF/Z/ZNy+7WI2KDSdk3gOx19LkvxGEWt+OvLGUda7zGAotxiacHspyKidSAe5WIfP6QoyTivNfNd1pmfTlHLfHFELJaZjoj1IuI9y/l8JPUwllhI6mmOoViE43+Ad0fEXRSB6FCK+ZFHU8yRfDlAZk6PiA8CF1EsJPJxFi4Usinwc+DDnbj/eyjmG34XcGBE3EAxVd0mFBnSE1lYXnALxZRwb4tiZb3xFIHnuZl5U2Y+FhHvAn4LXBQRjwEPUkx7th7FLA+DKWZ9eKZ8Pr+LiCOAtwMPRMQ/KWYGeX15/VtYONPFMsnMFyLilxS/l7sj4l8UgfzeQG+KxVWOXcIlfg38pzzvZYoFX9YG7qeYWq/qWxTlHO8BHoyIO4HHKQYjbg5sRTFP9v8hSR1kBllSj1LO97sn8GngAYrg8W0UwfF4irmAv9vmnL8C+1Fkf7ehmFd4AsUKbzd18v7PArsAX6UIWvcHDgYGUSxscVml7ezyXldRBM/HUix8sVmbvm1Xnpvl9d5EkaW+lKJc4YE23Xg3xQInzwIHUQTEv6UIkhvN
EsPk4R7D9OMffz3hQlJjvT/iwVrT5NMYhvQ4oV+RI4G9g7M1+uNszMlsx8b9nuKmAjirKX11IM1vwO8IF6npKkniIaL2IkSZIk9UxmkCVJkqQKA2RJkiSpwgBZkiRJqjBAliRJkioMkCVJkqQKA2RJkiSpwgBZkiRJqjBAliRJkioMkCVJkqQKA2RJkiSpwgBZkiRJqjBAliRJkioMkCVJkqQKA2RJkiSpwgBZkiRJqjBAliRJkioMkCVJkqSK/w9MT8usJkgvYAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(1,1, dpi=150)\n",
"plot_confusion_matrix(clf, X, y, display_labels=[\"classical\", \"disco\", \"reggae\"], ax=ax)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For Naive Bayes Classifier:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.naive_bayes import GaussianNB"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# Fit and make the prediction\n",
"gnb = GaussianNB()\n",
"y_pred = gnb.fit(X, y).predict(X)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a
ay([0.9 , 0.86666667, 0.8 , 0.93333333, 0.63333333,\n",
" 0.76666667, 0.83333333, 0.93333333, 0.73333333, 0.7 ])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 10 fold cross validation score\n",
"scores = cross_val_score(gnb, X, y, cv=10)\n",
"scores"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.8099999999999999"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy = scores.mean()\n",
"accuracy"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a
ay([[93, 3, 4],\n",
" [ 2, 81, 17],\n",
" [ 6, 19, 75]], dtype=int64)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Confusion Matrix of Naive Bayes\n",
"confusion_matrix(y, y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAIhCAYAAABT4Ew8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABcSAAAXEgFnn9JSAABZHUlEQVR4nO3dd5wdZfX48c9JSCEhFUIVCIamUqWDSBMQBRHEghXsfm0oYvnZsDcU7NgAFUUFFAWVJr1Jkd57h5CQ3pM9vz9mlkw2dzd7s7PZ5O7n/Xrd1+TOPDPzzO7dm3PPPfM8kZlIkiRJKgzo6w5IkiRJKxMDZEmSJKnCAFmSJEmqMECWJEmSKgyQJUmSpAoDZEmSJKnCAFmSJEmqMECWJEmSKgyQJUmSpAoDZEmSJKnCAFmSJEmqMECWJEmSKl
6w5o1RcRzwDDgMf7ui+SJPWxDYHZmbluX3ckIv4BTOilwz+Yma
pWP3OQNk1WHYkMExYsL4QS/t646o9Tx639C+7oJaVURf90AtaHbOIGnr6260mzB4cLx00/GDaj3oA48sYP78rPWYKxsDZNXh8QnjB7309ss36ut+qAUd+KId+roLalExyP8CVb9r5p3HrJy20nyjuun4Qdx++ca1HnPrvR7lrvvm13rMlY3vDpIkSS0raas9o93a2WPwJj1JkiRpCWaQJUmSWlQCi7LeDHLr54/NIEuSJElLMIMsSZLUwtr6Rc63XmaQJUmSpAozyJIkSS0qofZRLPpDPtoAWZIkqWUli7LukLb1Q2RLLCRJkqQKM8iSJEktzJv0mmcGWZIkSaowgyxJktSiElhUcwa5P+SjzSBLkiRJFWaQJUmSWpg1yM0zgyxJkiRVmEGWJElqUQm1j4PcH/LRBsiSJEktrN559PoHSywkSZKkCjPIkiRJLcph3paPGWRJkiSpwgyyJElSC1vUH1K+NTODLEmSJFWYQZYkSWphjmLRPANkSZKkFlXcpBe1H7PVWWIhSZIkVZhBliRJalUJbXWnfPtBCtkMsiRJklRhBlmSJKlFWYO8fMwgS5IkSRVmkCVJklpY3Rnk/sAAWZIkqUUl0JaWWDTLEgtJkiSpwgyyJElSC7PEonlmkCVJkqQKM8iSJEktKgkW1ZwPzX6QkTaDLEmSJFWYQZYkSWphdY9i0R+YQZYkSZIqzCBLkiS1KKeaXj4GyJIkSS1sUVow0Cx/YpIkSVKFGWRJkqSWFbTVng9t/Zv+zCBLkiRJFWaQJUmSWpQ36S0fM8iSJElShRlkSZKkFuYoFs0zQJYkSWpRCbRZYtE0P1JIkiRJFWaQJUmSWlawyGHemmYGWZIkSaowgyxJktSikvpv0rMGWZIkSepnzCBLkiS1sPqnmm59BsiSJEktKjNYlDUP81bz8VZGfqSQJEmSKswgS5IktbD6h3lrff7EJEmS1CciYqeI+EtEPBURCyJiakRcGRFHR8RStRwRMTAiPhERt0fEnIh4rtz/JXX2ywyyJElSC2ureZi3ukTEG4A/AwOB/wFXAuOAPYFXAK8C3lZpPwA4EzgMmAr8E1gLOAJ4bUTsk5nX19G3lfMnJkmSpJYVEasBP6MIjt+WmTtk5pszc19gG+B54K0RsU9lt3dTBMf3A1tm5hGZuTfwRmAY8IfyuD1mgCxJktSispxqus5H1jPV9JbA2sC9mfnHJfqceTdwevl0p8qmT5bLT2fms5X2ZwP/ADYFDq2jcwbIkiRJWtHmdbPdZICI2AR4CTCHorSio7PK5SE975o1yJIkSS2t7nGQa/IQ8CCwRUS8tZpFLm+4ezswBfhbuX
cnlHZi5ocLz/lctt6uicAbIkSVKLSuqfSS+LxYSIuLPh9syXLfMYmYsi4l3AeRS1w8dS1BavTXGT3l3AUZn5fLnLRuXyiU4O2b5+425cwjIZIEuSJGmFy8yrI2Iviizxy8sHwHzgIoosc7s1yuXsTg43q1yOqKNvBsiSJEktbFHvDPP2YHcyxV2JiCOBU4HrgCOBO4H1gU8BxwL7RMTumdndeuXaGCBLNXns/iH88aR1uPXqEcyYOpCxay9k51dN4x3HPsOoNRct0fb264Zz8VljeeC21Zn0zCBmThvI0OFtvPilczjwLc+z3xumsPTw6NKSDn/fs7xs55lssuVcRq+5gEFDkinPDeL269bgzJPX4ZF7Vu
LqpFjBi9gF9ddDuj11rIU48M4d37bLvsnaQuRMRmwG+BicDBmTmz3HQ/8IGIWB84mGJot58D7duHdXLI4eVyRh39cxQLqQa3XLUGH3n15lz6t7EMH7mInV81nUGD2zj3tHH83wFb8NxTg5Zof+0Fozj/j2syd/YAJmw1h1e8Zhrjt5jLHf9dg+99bGO+/eFaSqjU4t7y0WfYaZ/pzJg6kJuvHsH1l4xk
zgVUc8z0/+dQ+77Detr7uoFvH+zz/OyLEL+7obWg5J0Fbzo6Zh3t4CDALOrwTHVX8pl68sl4+Vyxd1crz29Y/W0bmWziBHxPHAl4GjM/O0vu3N0iJiPPAwcHk50PWKPHcCj2bm+BV53lY0d3bw7Q9vzLw5A3nbJ57hncc9A0Am/Ppr63PWyWtz4rEb8s0zFpdSHXjkZN7wgYmsue6S/+E8+fBgPnX4Zlx2zhj2OWwKu+4/fYVei1Ytx797AvffPowF85bMdRz8zuf46Dcf55jvPc
dtqatkV+HaHlt93u09j/iEn864/jeM1bn+vr7qh1tAe0nX2Sb18/plzeWi63iohBDUayaK9fvq2OzplBlnro6n+PZspzg3jRhLm8/dhnXlgfAUd/7inW2XAeN10+kgfvHPrCto03n7dUcAywwSbzOeRdkwC49eo1ltouVd114xpLBccA5/1uHE89MoSxay9k483n9EHP1CoGD2njY994hEfvW52zfrVeX3dHy2lRDqj1UZP2/zB37GR7+wQhjwBk5sPA3cDqwGsbtD+iXJ5bR+cMkPvWkxSDXr+zrzui5Xf
UWd59a7zmRAh7+o1QbBy3Yqbqy99oJR3TrewNWy3Dfr66T6nYVlbmXhfN/mtfze9vEnWXejefzoC+NZtMBvIlZFCb0wk14t/l4uXxkRH6puiIhdgU+UT8+qbPpBufxuRKxdaX848Drggcpxe8R3zj6UmQsy857MfGzZ
Wymju7+DNaY9SihttHjinWP3TXsm+YmvjkIP75+zUB2Hk/yyu0fPZ7w2ReNGEeTzw0hCcfHtLX3dEqapMtZ/OG9z7DRWeuxZ031DJylvSCzPwfcEL59GcRcUdE/CUirgKuprjp7peZeXFlt1MohoTbDLgnIs6MiEspgug5wNszs5Zi+VW2BjkiNgSOA14NbEjxg3mIIrV+YmZ2Gl1ExKYUM7QcCGwCjKW4i/IS4OuZeV+DfTYGPgvsR1E3Mxd4GrgK+EFm3ltpu1XZdneK4UpmUGSLLwO+k5lPl+3G00UNckTsQvEJak9gLeB5ioGz/5SZv6q02w54a9m3jYCR5fnOL6/nqc5+Fuq5UWsWf4sTnxjccPszjw3udPtdNw7jX6evRdsimPzsIO68fjiLFgbv+szTbL3
KXaS40c8cFn2XjzOQwd1sZGm85l/JZzmfTMIL714U1oazPrp+ZFJMd8+2FmTh/Ir7+9YV93Rz2R0Fb3THo1pZAz87iIuAb4ILADsAVFzHQ58KvMPKND+7aIeCPwcYrRLQ6mGP/4bODLmXlXPT1bRQPkiNgT+AcwmqI25VyKmpQtgeMp0uu3dHGI9wKfBu4AbqCYD/ylwDuAQyNiz8x8oci7DM
RxFI3w/8CxhIMVvL+4BrgXvLtjtQBM1DKQrF/04xJMmLKX6h51AE1su6xo9TfJUwALgJuIIiSN4G+B7wq0rzzwJvKM93VbluO+BDwOsjYkeD5N6z9a6z+NOP4P
jGTa5IFLDOk26elB/O/KIvMyZ+bSX9g8/egQLvrL2BeeDxiYvOO4ZzjigxN7v+NqGTvuNZ3t91w8stEzjw/me8dszAO3dzYaktS1173rW
Ydhbf/9QmzJg6aNk7SMspM
G4umku9N+EUV89INlte2JVS5AjoixFJ8URlNkkH+QmW2V7bsBywoGzwF+URZ8V499NEX6/iRg38qm91IExz/JzI922GcjimFK2n2MIjj+VGZ+v0PbLen8bs1qu1cCJ1KM+XdYZv6nsm014IAOu/wC+HhmPltpNwD4AvAV4OsUn7R6pLMpJYEJPT32qmyHvWaw6dazeeD2YXzh7RP48DefYOPN5/Lw3UP50Wc2ZNHC4pN7NCho2u8NU9jvDVNYMD949vHBXHzWGP544jr896KRfP30hxgxunHZhlT12SM3A2D4yIVssuVc3nbM03z/7Ps57TvrccaPvbFKzRm3/jzedewT3HbdCC46e1xfd0c9FiyqvaK29b+ZWhVrkN8LjKMYN++EanAMkJnXZmaX6bfMvK5jcFyuP5Wi7mXviKjeUdX+DnFxg30ey8wHu9n2nvbyimX4LMWr7xvV4Lg8xsLM/FeHdZdWg+NyXVtmfpWi1OJ13TinllMEfOk3D7PxFnO479ZhfPy1m/P6z
hE6
nKmTVnthZIvOapQBBg1OXjRhHkd95hmO/tzT3PO/4fzue+uuqEtQi5g1fTXuuH4NvvDOTbnv1mG887in2XxbS3XUnA9/9VFWG5T86PPj+7orUp9Z5TLIwKvK5S96cpCIWAM4hKIUYSyLs8DrUQSnEyjKKqAocQD4ZkQsAi7OzLmdHPom4CDgpxHxBeCqZgrGywzx3uXTXzax35oUgfBWFNn1geWmQcCaETE2M5/v7vEa6WxKyTKz/NKeHHtVt86LFvDzi+7l6n+P4q4bhzNv7gDGbz6XfQ6fwtX/Kj5
xFZy+ZJe13xPP88isbcO0Fo/jwN57szW6rRS1aGFx+7hg233Y2u+4/jftuHb7snaTSrvtNZca0gXzsG48ssX7QkCIftea68/nuGXcD8K2PTmDKpMb3X2jlkEBbzVNN94cxllbFALn9boEHu2zVhYjYF/gTi7O9jVRv2T2NoqzhTRT1znMj4gaKm+BOycxnKm2/B7yCIsi9FJgZEdcC/wROy8xllVisSVFP/XxmTunm9RxJEUx3NXDuCIq
NRLBq4GrzxkGq88ZMlf8V03FsHJtrs3mihoaSNGL2LAgGTa86vin6dWFtPL188oZz/TchgxahHb7Np4xt4hQ/OFbYOH9IdQadW3qB+URNSt3/0PXGaO/0KRNf4qRaD8KDAnMzMi/ggcSaXApiwIf3NEfBs4lKI+eReK0SU+GxGvzsxry
TywB8D4oM9d5l+/2Bz5U3AN5f4/VsTBHAAxxDEYg/mZlzyu3XALvRHwqGVkLPT1yNq/45mpFjFrLHQVO7tc8d/12DtrZgvY27l3GWGtm6DGCeftRh3tScV2+yc8P162wwj99edStPPTKEd++z7QrulbRirYo1yI+Xy+W9MWxPiizt2Zn55cy8OzNnZ2b7x+AXd7ZjZt6cmcdn5ispss8nUmRmT+rQLjPzqsz8TGbuQjHU2xnAOsA3ltG/SRRD1o2NiNHduJ7XAIOBH2XmDzPzgfbgeFnXo/o8cs9Q5s9d8jPIc08N4vijN2H2zIG8/8tPMmT1xZmWM382jhlTB3Y8DPfesjonHVd8SXLAm034q3Mv3XEmO+49jWLW+MUGrpa87uiJ7PeG55k7J7j8H2M6OYKk/iAJ2nJArY/sBzm3VTGDfDFFNvb9FKNRNKv9f4snOm4ox0d+ecf1jZSZ4s9RZG23Wk
iRFxPEVmelltF0XEZRR1zO8HvruMrnR1Pa+kCMrVy846eW2u/vcoNt16NmPXXsjUSatx5w3DWTBvAG895hn2f9OS1TK
voG/Pa76zFhqzms86L5LFwQPP3okBcmE3nlIVM47L3P9cWlaBWxwSbz+NSJjzJ18mo8cPswpk8ZyMgxxSgWa667gHlzg+9/YjzPPW19qCQ1a1UMkH9NMbzbQRFxDPDDSva3fXrCh7oYyaJ9EpDDI+Kbmflcud9o4DcsOWRb+zHfAdycmXd02HQQRenC45W2HwQuaDBKxmvK5eMs23coJkD5fETckJmXVo6/GnBAZSSL9ut5e0T8OjNnle02AE7uxrlUg90PnMbzE1fj4btW564bBrLGqEXsuPcMDnvfcw1rj
v609w6zVr8NCdq/PIPUNZtDAYteZCdjtwGge86Xl2P2iZowGqn7vtujU440frsPWuM9lkyzmMHLuQhQuK4QKv/Ndo/n7KOJ56ZGhfd1PSSsAa5OatcgFyZj5fzqLyD4oSh4+VN8ytDrwE2BTYnmJmvEb73xgRF1Fkoe8rs7VQ1ApPopjY49AOu70B+F1EPAjcTlECsQlFHXIbxXjD7T4I/Dwi7gLuBhZSTGCyLcXse1/txjVeHhGfpsgeXxIRN1JMULJWeZwhFCNVUP4c7gR2BB6IiKspxmHeh2KylGsoZvRTL9r9oGlNBbWHvnsSh757Ui/2SK3u2ceHcNp3N+j
qgfefbJIZ3WJ0utZlWsQSYzL6MIFE+myOC+nuKmuGnAl1j2CBeHUtQCP0eRBd6B4ma9XYGpDd
APgpxfSHewKHAWsDfwZ2ycwzK22/SDHZSFJM/XwIRfD+a2C7zLy6m9d4ArAXxewyGwFHUJRn3A4cW2k3v+zTzykC8IMpPij8mOJDwILunE+SJLWmumuQ+4NVLoPcrixh+NAy2hxPMfV0x/VzKLK+X+i4DTiqfFTbX0Ex1XN3+nUuxVBw3Wn7CF2MLpGZVwJXduM4U4D/62Tz3p3s4/ctkiRJDayyAbIkSZK6lsAiJwppmgGyJElSywraar9J
W/hO4fhSSSJElSN5lBliRJalGWWCwfM8iSJElShRlkSZKkVpXQVvfAVf0ghWwGWZIkSaowgyxJktSiElhUcz60HySQDZAlSZJaV9RfYuEwb5IkSVL/YgZZkiSphbWZD22aPzFJkiSpwgyyJElSiyomCqm3Zrg/3KRnBlmSJEmqMIMsSZLUwuofxaL1GSBLkiS1rKAt6y4YaP2A2xILSZIkqcIMsiRJUosqZtLzJr1mmUGWJEmSKswgS5IktTBv0mueGWRJkiSpwgyyJElSi8qk9lEssh8UIZtBliRJkirMIEuSJLWwtn4wbnHdDJAlSZJaVrCo9pv0Wj/gtsRCkiRJqjCDLEmS1KKSXrhJr9ajrZzMIEuSJEkVZpAlSZJamBOFNM8MsiRJklRhBlmSJKmFOcxb8wyQJUmSWlRxk169AbI36UmSJEn9jBlkSZKklhW1D/PmRCGSJElSP2MGWZIkqVVlLwzz1g+KkM0gS5IkSRVmkCVJklpUUv8w
0ggWyALEmS1MqcSa95llhIkiRJFWaQJUmSWpgZ5OaZQZYkSZIqzCBLkiS1qCR6Yarp1s9Im0GWJEmSKswgS5IktTBrkJtnBlmSJEmqMIMsSZLUwuqeKKQ/MECWJElqUUn9JRb9YSY9SywkSZKkCjPIkiRJrSp74Sa9fpBCNoMsSZIkVZhBliRJamEO89Y8M8iSJElShRlkSZKkFuVU08vHAFmSJKmFpSUWTbPEQpIkSaowgyxJktTCnEmveWaQJUmSpAozyJIkSS3KqaaXjxlkSZIkqcIMsiRJUgtzFIvmGSBLkiS1quyFmfT6QY2FJRaSJElShRlkSZKklhW9UGLR+iUbZpAlSZKkCjPIqsWj9w3lwPW36+tuqAW9574H+roLalG/eeehfd0FtaJbLoQ5fd2JxRzmbfmYQZYkSZIqzCBLkiS1sOwPKd+amUGWJEmSKswgS5IktbC2fjDqRN0MkCVJklqYM+k1zxILSZIk9ZmIGBcRJ0TEvRExJyKej4j/RcT3Oml/SERcHhHTy8dlEfHaOvtkgCxJktSi2od5q/NR5z1/EbEDcDdwLLAA+DtwHTAW+ESD9scA/wB2B64GLgF2Bs6LiI/U1S9LLCRJkrTCRcQ44HxgdeDQzPxHh+07d3i+BXACMA/YJzOvLddvDlwDnBgR52dmjwfQN4MsSZLUqrIY5q3OR40p5K8AawHHdQyOATLz+g6rPg4MBE5uD47LdvcB36BI/H68jo4ZIEuSJGmFiojVgbcDs4BTu7lbe53xWQ22ta87pIddAyyxkCRJamkr6SgWOwIjgKsyc05EHATsDwwF7gP+kplPtTeOiNHARuXTmzseLDMfj4hJwMYRMTIzp/ekcwbIkiRJLSt6IUAOgAkRcWejrZn5sm4c5KXlcmJEnAMc2mH7NyPiPZl5Rvm8PTiekpmzOjnmExQlGxsDt3ejD52yxEKSJEkr2phy+Trg1cCHgbWB8RQ34q0O/DYitiv
VEuZ3dxzPbAeURPO2cGWZIkqYW19U6JxYPdzBR3pj1Juxrw+cz8WWXbcRGxMfBG4DjgbT04T486J0mSJK0oMyv
nSTXvu6vTq0H9bFMYeXyxk96BdgBlmSJKllJeXQbDUfswaPlsvZmflcg+2PlMu1y+Vj5XJMRAzvpA75RR2OvdzMIEuSJGlFax+JYvWIGNJg+9hyORMgM6eyOEjevmPjiNiQ4ga9R3s6ggUYIEuSJLW0zKj1UU+f8jHgVoohMfZq0KR9XXVIt3+WyyMatG9fd24d/TNAliRJalXZCwFyfSUb3y2XJ0TEeu0ry5Erji2fnlxp/0NgEfDBiNi10n4z4PPAwrJNj1mDLEmSpBUuM/8YEQcA7wLuiohrKIZ32x0YAvwqM8+stL83Io4DfgBcGREXAfOBA8r9PpaZD9TRNwNkSZKkFlbzPXp1Oxq4GvgAsDdFd/8H/CIzf9uxcWaeGBEPUAz/tme5+kbgu5l5Xl2dMkCWJElSn8jMBH5VPrq7z7nUVGvcGQNkSZKkFl
VNOtz5v0JEmSpAozyJIkSa1sJS9CXhmZQZYkSZIqzCBLkiS1MGuQm7fcAXJEnNKD82ZmvqcH+0uSJGkZEsiaSyz6Q8VGTzLIR/Vg3wQMkCVJkrTS6UmAvE9tvZAkSVIviF4osWj9ko3lDpAz8/I6OyJJkiStDLxJT5IkqVUlUHcGuR8UIdceIEfEasBrgZ2BtYD/ZuYp5
1y3V3ZebCus8tSZIk9VStAXJEvAI4HdiQokAlgUFA+4gXuwF/Ad4I/LXOc0uSJGlpdY9i0R/UNlFIRLwUOB9YD/gx8CaWruI+F5gNvKGu80qSJKkLWfOjH6gzg/xFYCjwmsy8ECBiyfg4M+dHxP+A7Ws8ryRJklSbOgPkfYDr24PjLjwJbFvjeSVJktQJZ9JrXm0lFsBo4PFutBtOUZcsSZIkrXTqzCBPBDbtRruX0L1AWpIkST3VT+qG61RnBvkSYLuI6HSGvYg4jCKIvqjG80qSJEm1qTNA/jYwHzgnIj4UEeu2b4iIMRHxbuA3wCzgBzWeV5IkSZ3IjFof/UFtAXJm3gMcWR7zJxQ34yXwLmAS8CtgCPC2zHy4rvNKkiSpE3UP8dZPhnqrM4NMZp4DbEUxDvI9wFyKrPJDwC+AbTLzH3WeU5IkSapT7VNNZ+ajwDF1H1eSJEnLo3+URdSp1gyyJEmStKqrPYMcEUMoppLeE1i/XP0UcBVwdmbOrfuckiRJ6kQ/qBmuW60BckS8CjgNWI+l8/nvB74bEUdlpsO8SZIkaaVUW4AcEbsA5wGDgf8CZwCPlJs3phjhYlfg3IjYKzP/W9e5JUmS1AkzyE2rM4P8NYoppD+Umb9osP3HEfF+4GTgq8CBNZ5bkiRJqkWdN+ntAtzYSXAMQGb+EriBIpMsSZKk3pZR76MfqDNAbgMe6Ea7BzDZL0mStEJk1vvoD+oMkK8HtulGu23KtpIkSdJKp84A+YvAZhHxlYhY6rhR+AqwWdlWkiRJvc1pppu23DfpRcQ7G6z+LfAF4B0RcTbwaLl+Y+BwYDzwK2ALipEuJEmSpJVKT0axOI3GnyOCIhA+trK9WtH9fuB9wO96cG5JkiQtS2/cWNcPbtTrSYD8VfpNol2SJEn9xXIHyJl5fI39kCRJUi8I05lNq3WqaUmSJK1kDJCbVucoFpIkSdIq
YMckS8AjiUYji3ESx5g167zMz96j63JEmSOugHN9XV
YAOSIC+A3wLhYHxcmSAXL7c5P9kiRJWinVWWLxQeAo4CZgf+Cv5fotgIMohoVrA74HvLjG80qSJKkzThTStDpLLI4CZgEHZebkiHg7QGbeD9wPXBAR/wL+DFzD4klEJEmSpJVGnRnklwDXZObk8nkCRMTA9gaZeRZFhvlTNZ5XkiRJnTGD3LQ6A+QBwOTK89nlckyHdvcDW9d4XkmSJDVSd3DcT4LkOgPkJ4H1K8
Syi279Buc2BhjeeVJEmSalNnDfL/gP0iYmBmLgIuBL4DfDcijqQIoD8I7AD8p8bzSiutIau38fK9ZrD
tN52c6zWGeD+bS1BU89PJi
jWKs38xjrmzBy77QOrXnrttMLf/ZhTP3jSUOc8PZNDqbYzZfAGbHzGDzQ6fSVTGCpr60CCeuHx1nrttCM/dNoQZjw8C4E2XPM6IF5mb0GKbvngyL9/2a
YbBJ
DaZcWsWX/weePg7Gra/4K+/X+Yxb7l9HT7z5QNq7adq4DBvTaszQP4H8GbgtcA/MvPWiPgT8Bbgzkq7hcDnazyvtNLa57ApfOKEJwB49L4hXHfhSIaNaOMlO87incc9y96vn8qnDp/AtMmD+rinWlk9fMEwLj1mbXJRsObL5rHODnOZO2Ugz9w4lGdvGspT16zO3t9/7oX295wxgjt/O6oPe6xVxdveeBu77/JEt9tfeEnnA1DtvMOTjB41jzvuWqeOrkl9
YAOTPPiIi/smT5xLuA24DXU9Qi3wd8NzOvr+u8K6uIOB74MnB0Zp5W
sM2AvYJDMf6au+acVZuCD45+/H8rdfjePxB4a+sH7s2gv46u8fZrOt5/Chrz7Ftz+8cR/2UiurtoVwzfFrkYuCvb8/kQmHzHph29QHBnHeW9fjwXPXYPM3zmD9XecCMGbz+Wzzvqmstc081tpqPhe8ex2mPTy4ry5BK7G77xvHw4+O4d4H1uS+B9bidyf/lcGD2zpt
2f7NFw/fBh89n7FY8A8J8rNumNrqqHoh/UDNet1pn0MnNeh+cLgG+XD6nfufjMsVx85til1j8/cRA
X8bcNK5D7DHQdNYbVAbCxc487uWNPWhQcydPJBRm8xfIjgGGL3pAia8biZ3/W4Uk24f8kKAvMUbZ/ZFV7UK+svftqrlOK/c/VEGD27jrnvX4qmnR9ZyTKmv1T7VtLr0TmAYRT22+rmH7lodgMFDk5FjFvH8RANkLWng4O6lfYaMXtTLPZE6t+9eDwHwn8udA2ylZQa5af6PvAJl5mOZeU+ZWVc/t+5GxRcuC+YHM6Z6o56WNmLDhYzYaAHTHh7Mg+cOX2Lb1AcG8eA/1mDwqEWM3392J0eQete4tWax1UsmsmDBAC6/anxfd0eqzXJnkCPioR6cNzNzQg/2X2lExOuAzwHbAnOAy8rnjdpeRoMa5IjYGPgssB/wImAu8DRwFfCDzLy3w3E2BI4DXg1sWJ73IeBc4MTMnF5pOww4luIGygnAfOBW4GeZ+aeeXLt65rD3TgLgxstGsGC+n1W1tAEDYa/vPMeFH1iHy45dm9tPmcfIjRcw9/niJr0xE+az53cmMWR053WjUm/a95UPMWAA/PfG9Zkxc0hfd0eqTU9KLMbX1YlVVUR8EPg5xZcXV1IEtbsC11MEq905xoYUQ+SNpZhE5V/AQGBj4H3AtcC9lfZ7UowYMhp4pDzP6sCWwPHA34FbyrYjgEsphtZ7DjgPGA7sC+wZEbtl5seX59rVMzvtO50Dj3yeBfOD33133b7ujlZi6+wwj9ee/jQXf3gdJt85hMl3FkHIgEHJ+nvMZeSGfiGlvrPfKx8G4GLLK1Zq3qTXvOUOkDOzX6e8yqzvicAC4JDMvKBcPwg4FXh7Nw/1Xorg+CeZ+dEO59gIGFR5PhY4myI4Po4iu9xW2b4b8FTlEN+kCI4vBQ7NzBlluy2By4GPRcRFmXleN6/5zk42tcS3ASvKhpvO5TM/fowBA+AXX1vvhVpkqZEHzxvOlZ9di3HbzWOfH0xk9GYLmD1xILf/ZhR3nDKKp/87lEP+/BQDHahCK9imL57MxhtNY8bMwfz3hhf1dXekWvXrILeH3g0MBc5oD47hhZE7Ps7iqbaXZVy5vLjjhrJm+cHKqveW7c/PzBOqwXHZ/trMnAgQEcOB9wBtwP+1B8dlu3uAr5dPzSCvQGuuu4Cv/+EhRoxZxNknj+Oc34xb9k7qt6Y9shpXfGYcQ8a0ccAvnmXctvMZNCwZNX4h
jaZDbcZzaT7xzCfWeN6Ouuqh/at8weX3nNRixY6H0UK7WMeh/9gAHy8tuzXC5Vx5uZkylmEuyOm8rlNyPi4IgY2kXbV5XLX3TjuDtQlF78rwyIO2qfEmmPiOjW6yAzX9boATy4zJ3FiNEL+dYZD7Luhgu44E9j+OVX1+vrLmkl99A/16BtQfCiPecwaPjS35FuclAx9NszN3T1tiHVb8CAtsrYx5ZXqPUYIC+/9cvlo51sf6SbxzkN+AvwUop64ikRcUVE/L+I6FicumG57E5A2t6/hv3IzKnANIogekw3+6rlNHTYIr5++sNsvMU8rvrnKE761IZA
gUruU365kiKzd4ROOb8NrXz5vuW7lWrO22foY1x87hmYnDueOutfu6O+pK9tKjxfmu2scyc1Fmvhl4OfAV4AZgF+AbwH0RsXtvnr4Xj63SoMFtHH/qI2z58tnceOkIvvV/G9HWZnCsZRu2VjG+8aQ7GhcYT7q9WD9ig4UNt0u9Zb+9ivKKSy7fBD/sqxUZIC+/p8tlZ3MENzV3cGbenJnHZ+YrKeqMTwRGACdVmj1eLrtzU1z7zXoN+xERoyhu9psDTGmmr+q+AQOSz/7sM
fcya3Xzecr753vDPmqds2elVxK8MzN6zO3X9css544i1DuOO0UQCMP3DWUvtKvWXI4IXsvstjgJODrDLMHjfNmfSW35XA3sCbgH9XN5SjTRywvAfOzOkR8TngGKA6F+jFwP7A+4FzlnGYmyiC3x0iYrPMvL/D9vZRNq7ueLOf6vO6oyfxitdMA2Da86vxkW8+0bDdr762PtOf989RS1
ZfPZ+j1Tuf03o7nm+LW46w8jGbPpfGY/uxoTbxlCtgVbvHk6G+wx94V9Jt05mGuOX/OF5zOfKl5XF3947Rdm5tvijTPY4k1OSd3f7bzDE7z1jbe/8Hy11Y
Ck769uL/0v545tZcf9OSI1TsvsvjDFt9IffevyZPPDVqxXRWPeIwb83zf+TldyrwaeBtEfGHzLwYXhjm7USK8YaXKSLeAdycmXd02HQQxfdWj1fW/ZpieLeDIuIY4IeZ+cLLPiJ2BR7KzImZOSsiTgE+DPw0Ig7LzFllu82BL5S7/aiZi1Zz1qhMAdweKDdy+vfXZfrzK6JHWtXs/JkprL39PO750wgm3TGEaQ8PZ9DwNtbdeS5bvGkGEw5eMnu8YOYAnrt16Zv2nr978SQOL9pzTq/3Wyu/USPn8ZLNJy21vrpu1Mh5S23f95XtU0tv0nudk/qYAfJyysyHI+JY4CfABRFxBfAMxUQhY4A/AG
xqHeAPwuIh4EbqfI+m5CUYfcxuJAlsx8PiLeSDFRyIkU4xjfQHGj3UuATYHtgYnlLp8r+7M/8FBEXM7iiUKGAj/KzG5NaKLlc
31+X07zsRiHpm/AGzGX9A90aOXG+Xubznvod7uUdqBRddOoGLLm1+GPsvfmO/XuiNepUZ5Kb1WjFkRGwWEbuV2cqWlJk/BQ5j8Y11B1JM47wr8EA3D/MD4KfADIqh4w4D1gb+DOySmWd2OOdlFNNan0yRYX49sAfFiBRfojLCRTn28V7Al4FJwOvKc9wIvNVZ9CRJkpZWawY5IoZQBGPvZ/HQYb+lmFSDiHg78Eng3Zl5S53n7iuZeQ6N64GPLx/Vtns32P8K4Iomz/kw8KFutp0FfLV8SJKk/sYMctNqyyBHxOrAZcBngPnAv1h67JdLKLKfb6
vJIkSVKd6iyx+DRFmcEpwIsz85CODTLzKeAuFs8IJ0mSpF4UWe+jP6izxOLNwGPAhzKzq1Hr76WomZUkSVJvSiBrnsylHwTJdWaQNwFuXEZwDEX5hVMbS5IkaaVUZwZ5Dt0LfDfBmdskSZJWjH6Q8a1bnRnkW4AdI2JcZw0iYhOKcXpvqPG8kiRJUm3qDJB/BYwAzoiItTpujIjRFDfwDQJ+WeN5JUmS1EBQ/016NVc0r5RqK7HIzDMi4hDgLRSztl1TbtojIv5OMWHFSOB3mXleXeeVJEmS6lT3THpvoxgHeS5wQLluM+AQigqYzwNH13xOSZIkdSZrfvQDtc6kl5kJfC8ifgC8HBhPEYQ/AdyQmfPrPJ8kSZJUt1oD5HaZuYjiRjxvxpMkSepD/WVyjzr1SoAsSZKklYQBctNqC5Aj4pQmmmdmvqeuc0uSJEl1qTODfFQ32iTF6CAJGCBLkiT1pt64sa4fZKTrDJD36WT9AGBDilEt3gKcCJxb43klSZKk2tQ5DvLly2jyu4j4J/Bb4B91nVeSJEmd8ya95tU9DnKXMvMM4E7g+BV5XkmSJKm7VmiAXLof2LEPzitJkiQt0wod5i0iBgDbAG0r8rySJEn9liUWTVshGeSIGBYR2wFnUEw9vax6ZUmSJKlP1BYgR8Sizh7ADOAm4I3AJOC4us4rSZKkzkXW++i1fkasGRETIyIj4oFltD0qIq6PiJkR8XxE/Csidq+rL3WWWDxO50n8+cDTFJnjn2bmxBrPK0mSpFXf94G1ltUoIk4CPg7MAS4EhgL7AwdExBGZeU5PO1LnMG/j6zqWJEmSarIK1CBHxH7Au4BfAu/vot2rKILjycBumXl/uX434DLg1Ii4LDOn9qQ/dZZYvC4iDq
eJIkSWp9EbE68AvgLuCEZTT/ZLn8entwDJCZ1wInA6OpY
mOm/S+xvwsRqPJ0mSpJ7Kmh/1+zLwYuCDwILOGpWB9L7l07MaNGlfd0hPO1RnDfJzwJQajydJkqSe6I0b62o8XkRsAxwLnJqZV0bE+C6abwEMAZ7LzCcabP9fudymp/2qM0C+DNg5IiIzV4FqF0mSJC2nCRFxZ6MNmfmy7hygnB/j18BU4NPd2GWjctkoOCYzZ0XEVGBMRIzIzBnd6UcjdZZYfJHizsMTI2JojceVJEnS8lp5Syw+CuwEHJeZk7vRfo1yObuLNrPK5YiedKzODPKRwL8oLvYtEXEx8Bgwt0HbzMyv1XhuSZIkrTgPdjdT3EhEbAR8Hbg8M0+
Vc1We4AOSIeAs7MzM+Uq46n+FwRwNrAW7vYPQEDZEmSpF7Wm5N79MBPgcEUN+Z118xyOayLNsPL5XKXV0DPMsjjgXGV50f3pCOSJEnqNw6mqD0+OSKq69vLdDeIiMvKf78lM5+hqEwAeFGjA0bEcIph3qb0pP4Y6p0o5Ld1HUuSJEk1WTkzyFAEs3t1sm1oZVt70HwvMA8YFxEbZOaTHfZ5ebm8racdq/MmPUmSJGmZMjMaPYBNyiYPVtY/Uu4zB7ik3P7GBoc9olye29P+GSBLkiS1spV3FIvl8YNy+YWI2Kx9ZTnV9AcoyjZ+09OT9LTEYruI+NLy7JiZX+3huSVJktSFoP6b9GLZTXpNZl4cET8EPg7cEhEXUdzst3/ZtaMzc2pPz9PTAHnb8tGMoPj8YYAsSZKkpmTmMRFxC/ARisB4PnAx8LXMvKaOc/Q0QH4QuLqOjkiSJKlmvVEW0YtlFmW98TKT1OXYyaf1Vj96GiBflZnvrqUnkiRJ0kqgzpn0JEmStLLp+xvrVjmOYiFJkiRVmEGWJElqYSvpVNMrNQNkSZKkVmaA3LTlDpAz0/IMSZIktRwzyJIkSS3MEovmmQWWJEmSKswgS5IktTIzyE0zgyxJkiRVmEGWJElqVavYVNMrCwNkSZKkFhZ93YFVkCUWkiRJUoUZZEmSpFbWD0oi6mYGWZIkSaowgyxJktTCnCikeWaQJUmSpAozyJIkSa3MDHLTzCBLkiRJFWaQJUmSWpkZ5KYZIEuSJLUwb9JrniUWkiRJUoUZZEmSpFaV1F9i0Q8y0maQJUmSpAozyJIkSS0qqL8GOeo93ErJDLIkSZJUYQZZkiSplfWDmuG6GSBLkiS1MId5a54BsuoxYAADR43q616oBf3qPYf3dRfUon
xfV93QW1oFsOm8usB/u6F+opA2RJkqRWZga5ad6kJ0mSJFWYQZYkSWplZpCbZgZZkiRJqjCDLEmS1KqyF0ax6AcZaQNkSZKkVtYPAtq6WWIhSZIkVZhBliRJamGRppCbZQZZkiRJqjCDLEmS1MpMIDfNDLIkSZJUYQZZkiSphdU+zFs/YAZZkiRJqjCDLEmS1MrMIDfNAFmSJKlVOZPecrHEQpIkSaowgyxJktTK+kHGt25mkCVJkqQKM8iSJEktKqi/BjnqPdxKyQyyJEmSVGEGWZIkqZVZg9w0A2RJkqQW5kx6zbPEQpIkSaowgyxJktTK0hRys8wgS5IkSRVmkCVJklqVU00vFzPIkiRJUoUZZEmSpFbWDzK+dTNAliRJamHR1tc9WPVYYiFJkiRVmEGWJElqZZZYNM0MsiRJklRhBlmSJKmFOdV088wgS5IkSRVmkCVJklpVUv9U0/0gI20GWZIkSaowgyxJktTCrEFungGyJElSKzNAbpolFpIkSVKFGWRJkqQWFdRfYhH1Hm6lZAZZkiRJqjCDLEmS1MrqHuatHzCDLEmSJFWYQZYkSWphDvPWPANkSZKkVpXUP8xbPwi4LbGQJEmSKswgS5IktTBLLJpnBlmSJEmqMIMsSZLUshLaLEJulhlkSZIkqcIMsiRJUit
YRv7QyQJUmSWpg36TXPEgtJkiSpwgBZkiSpVSWQWfOj592KiGER8fqI+E1E3BsRcyNiVkTcGhFfiog1utj3qIi4PiJmRsTzEfGviNi9571azABZkiRJK9pbgb8B7wYWAf8ArgQ2Ab4C3BARa3fcKSJOAk4FtgIuBq4H9geuiIjX19U5a5AlSZJa2Epag7wA+CVwUmbe3b4yItYD/glsD5xEEUi3b3sV8HFgMrBbZt5frt8NuAw4NSIuy8ypPe2cGWRJkiStUJn528z8QDU4Ltc/DXy4fHp4RAyubP5kufx6e3Bc7nMtcDIwGnhPHf0zQJYkSWplWfOj991aLocAawJExOrAvuX6sxrs077ukDo6YIAsSZKklcmLy+UC4Pny31tQBMzPZeYTDfb5X7ncpo4OWIMsSZLUwiJ7Je07ISLubLQhM1/Ww2N/vFyen5nzyn9vVC4bBcdk5qyImAqMiYgRmTmjJx0wQJYkSWplbX3dge6LiNdQ1BEvAL5Y2dQ+7NvsLnafRVGHPAIwQJYkSdIK9WANmeIlRMSWwOlAAMdl5q3L2KXXGCBLkiS1qMj6Syx6Y9i4iNgAOB8YA/wgM3/YocnMcjmsi8MML5c9yh6DN+lJkiSpD0XEWOBCYGOKSUA+1aDZY+XyRZ0cYzhFecWUntYfgwGyJElSa1uJh3krp5T+N/BS4K/A+zIbprzvBeYB48psc0cvL5e31dEvA2RJkiStcBExBPg7sDNwAXBkZi5q1DYz5wCXlE/f2KDJEeXy3Dr6Zg2ytIKMHDOfN773CXbZezLj1pvH/HkDePbJodxy3WhOOeHFyz6A+qXNNpnEy7d5ii03ncQWEyYxbs3iBu7933xUp/uMGD6Pt7z+NvbY+THGrTmLWbMHc/vd6/DHv27Dg4+uuYJ6rpXdtBuCu9+77DDgRR9axIs+WAyD8PjPB/DkyQM7
v+0YvY6JhVaMiE/qJ3hnnrkYgYCJxBMfnHlcDhmTl/Gbv9ADgI+EJE/LPDVNMfAKYCv6mjfwbI0gqw6Utn8LVf3c6oMQt55P5hXHfJmgxbYyEbTZjNYe98wgBZnX
G25lj50e73b7saNnc+JX/s36685g8pTVueGWDRg7eg6v2PlRdt3hcb703f246bZG306qvxm8VrLW6zoJZhfBpH8WXzKPePnSwdWI7doYstFSqxn+0pUvEFPv3FRXg48Ah5X/ngT8LCIatftUZk4CyMyLI+KHFOMk3xIRFwGDgf0pRr44OjOn1tE5A2Spl40cM5+v/fIOhgxp4ysffhn/vXTJDN7mW0/vo55pVXD3fWvz8KNjuffBtbj3wTU5/SdnMXhw5xm6Y95/DeuvO4P
96Ar524N3PnDQJg9x0f5UvHXsZnP3oF7/zoEcyZO2gFXYFWVqtvApt+reG32Uy5Kpj0zwEMXjcZudPS0dW4w9tY+9CVM+rSKmNM5d+HddoKjqcIoAHIzGMi4haKAHt/YD5wMfC1zLymrs4ZIEu97O0feZRRYxfw069uulRwDHDf7SP7oFdaVfz5H1t3u+24NWex2w5PsHBh8MNf7/ZCcAxwzY0bc9k1m7DfKx7i1fvcz9/+/dLe6K5aRHv2eK3XtNE4qadVykpYYpGZx1MEv8uz72nAafX1ZmnepCf1osFDFrHvIROZM3sAF/1tnb7ujlrcpptMBuCZiSOYOGmNp
feue6AOy242NLbZPaLZoNUy4touK1DraeWP2TGWSpF2221UyG
GIO24ayfx5A9lxz+fZfrcpDBrSxpOPrM6V54/j+eeG9HU31SKGDlkIwIxZgxtunz6jeK1N2HjKCuuTVj3P/ydomxMM2zIZNqFxm+nXD2D2vUnbPBi8Dox+RRtr+KXEyikh6v6cs/IlpGvX7zLIETE+IjIiLouIkRHxg4h4OCIWRMRJZZuxEfGtiLgrIuZExLSIuCQiDu7iuIdHxHURMTsiJkXEmRGxaUQcX57vqAb7bBMR50bE1IiYERFXRMT+EbF3uc9pHdqvFxGfjojLI+LJiJgfEc9ExF8jYqcu+jYsIj4XETdHxMzycV1EvGu5f5Dqlo0mzAJg2uTBfPHHd/LVX9zBYUc9ycFHPs0HPvcQvz7/BvZ6zcQ+7qVaxbTpQwFYZ9zMhtvXXbtYP3LEPIYOWbDC+qVVS3t5xbgusseTzhvAM38YyMSzBvLETwdyx5GDuO/YgSyavaJ6KfWu/pxBXh24nGLWlsuB/wFTImJzimLvDYFHKMblGwHsCpwbEcdl5gnVA0XEx4GTgDbgCuAZYBfgejoZj68ckuRiiikTbwPuAiZQTLP40076fCjwHYrBsm8DpgObURS3HxwRB2fmhR3OszZwEbBN2a/LKe703B04LSJ2zMyPdvmT0nJbY2SR0dtln8m0tcFPv7opV16wFkNXb+Pgtz7FEe9+gk9+614ef2gYD92z9FfiUjPueWAt5s8fwNjRc9lx2ye48dbqhFPJAXs98MKzYasvWKJGWQKY/xxMuz5gYLLmQUsHyEM3TDb65CJGv6KNIevBwhkw46bgsRMH8vzFA8hFsMVJjW/8U1/JXqhBbv0Ucn8OkHcGrgVe3D4kSDkm380UwfGnge9nZlu5bVOKaRC/HRHnZ+Yd5foXA9+luIvy1Zl5abl+NeCXwNEdTxwRAyiKy4cBn8/Mb1a2vQf4dSd9vhrYKjPv7HC8A4F/UAyRslmHGWhOpQiOfwh8JjPnlfusA5wHfKQcS/D8Zf3AIuLOTjZ18iWcovyOZrVBySknbMI
7Q+ANOnwCknvJh11p/Lnq+exBve/Tjf+/RL+rCnagWz5wzmHxduyREH38Wn/+8qfvjr3bj5jvUYO3oO73rTzWy0wdQX2rald15paZP/PQAWBaP2aGPwWktvH3fwklOpDRwGQ16TjNxpIbcdsRpTLh3AjNvaGLFN6wdQqxR/HU3rdyUWHXysw3h5hwBbA2dn5vfag2OAzHwAOBYYCLyvss+7Kcbg+317cFy2Xwh8Emj0Xee+wObA/cC3qxsy8zcUgfBSMvP2jsFxuf4C4EyKQHWr9vURsR3wGuAG4JPtwXG5z7PA+8unH2p0PvXc3NmLB9S/sMFNehf9
hpausdp62wPqm1nXLGDlxx3caMGT2X4z91KX8/7Y+cetLf2H2nx/jZb3d5od2sTuqU1b89143yikYGj4Nxhxb7TL3aD19a9fXnDPLTmXljh3UHlMu/drLPleVy58q6PcrlmR0bZ+bUiLgQOLzDpvZ9zq4G4RV
RZQjkt46vLPoyjCM6hCOyhKLm4vfx3+/Wc0+g8mXlzRMzscD2dysyXddKnOynmUFcHE58qboqaO3sA06csHZA8+2RRMzpqTetBVY8FCwfytRP3Yastn2WnbZ9k1Mi5PDd5OJdds8kL37I++fQIFizsfDY09U9zHoLZ9wQDhiVj9mk+5Th0o2KfBc/V3TP1VKyEw7yt7PpzgNxonKPx5fIPEfGHLvatfvG0XrnsbKqrRudZnn2IiK0pSinGd9G3EZV/t7f7RkR8o4t9hnaxTT3w4N1FXfHgoW2sNqiNhQuW/NJmxKgiMK5mmqU63HHPOtxxz5LfWrzqlUUN8q13rdsXXdJK7rnzivensfslA1dvfv+F04vM8YDl2Fda2fTnAHlug3Xt0cv5wLNd7Dupi229Ior5F/9CEfSeXD4eAmZmZkbEN4HPUdyA1679eq4CHlxxvVW7554eyoP3DGfClrPYeqep3HzN2CW2b7VTUVrRHkhLvSd53QH3APCv/2zex33RyiYTJv17+cor2vefcknx38/wl5itXOmYQW5afw6QG3miXP46M8/u5j5PA1tQ3Nh3V4PtG3ayT2fbOlu/Zfm4MTMb1Qy/uMG69us5JzO/38m51MvO/s2GfPp79/De4x7mC+8bzpRJRdnFi7ecyeFHFb+if/15va4OIXXbuDVnsmDBQKZOX5zGGzxoIR8++r+8ZLNJXHDZptz74Lg+7KFWRjP+F8x/Khi8djJy58bB1ILnYfKFAxh3SBsDhy9ev2g2PPr9Acy8fQCD1krG7mcwplWfAfKSLgLeQzFsWncD5KuBvYE3UAwJ94KIGMXiOuCO+wAcFhH
8OoEwBvarBP+5zlT3TcEBFjKOYj7+gi4GsU12OA3Ecu++fabL/7FPY/7FlOPvcm7r5lJEOGLOIl209n8JDk339Zl6suMGBRYztv/zhvf8OtLzxf
Uiu/ejr5/3w
Tz96W628uPldvv9XTfOL913DfQ2sxcdJwhgxexMu2mMjIEfO44Zb1+eGvd12xF6BVQvvYx2u+pu2F0Xc6WjQHHvnWQB774QDWeFkyaBwsfB5m3RMsnBoMHJFsfsKi5SrPUC9KikFo6z5mizNAXtLZFFngt0XEvcB3qyM/lGUOuwNkZnuQeypwHPDOiDg9M68o2w6kCEqrNcHtLqEYwWILiuHkvlM5x1HAng32eYDiJb5vOZT
WX7oRTlFmM77pCZ/42Ii4D9I+KnwOcyc3q1TURsC6zXnWHetPxO/Pzm3HXzSF7zpqfZZqepJPDAXSP491/W5T9/tx5UnRs9ci4v2Wzpqq7qutEjF1eM3ffQWlz53/FsudlzTBj/PAsWDODhx8ZwwWWbccFlm7JkFZYEbfNh8kXl1NKv7TySGjQa1j96ETNuD+Y+Gsy4tRjKcsgGMO51i1jv7W0MXnqwHmmVZIBckZkLI+L1FJngr1KMEXwbMJHixrztgLWBT1BmgTPzwYj4NMVEIZdGxOUU9cs7UwStpwNvpxgnuf08beUsdhdTjKt8JIsnCtmJYqKQD3fYZ2JE/IZiiLlbI+ISYA5FMD2QYlzloxpc1tspaq
D3hrRNwCPAWMohgfeUOKMZINkHtVcMFZ63HBWZZSqDkXXr4ZF16+WbfbP/L4GL75o716sUdqNQMGw05XLlxmu4HDYaNj6k5FakVwFIvm9fdxkJdSZma3B75AUc6wK8UwbZtTTCLyYYqgt7rPD4EjgBvL9gcCt1DMptee2pncYZ9rKbLR5wGbAK8DFlCMW3xto30oxis+FngY2I8iOL4Y2BF4tJPrmVie52MUQfj2ZV+3objJ7zjghEb7SpKkFpBZ76Mf6HcZ5Mx8hGV8x5iZ04BvlI/uHvdsOtQtl2UWu1NU69zaYJ9bKSYnocN+J5f/vKVD+0XAD8pHR8eXj0Z9mwv8uHxIkiSpC2aQaxAREyJidId1QyimoH4p8J/MfKbD9rERMb7Bsd4MvBeYSpFdliRJWn5mkJvW7zLIveSNwFci4iaKyT9GAttSTAgyCfhIg302B64ta5wfKte9hOLGvUXABzJzVm93XJIkSUsyQK7HfygC4l0pantXA54Efg58KzMbzZj3EMXNePsC+wDDKYLpvwInlDXKkiRJPeO9lU0zQK5BZt4AHNnkPhNpnFmWJElSHzJAliRJalWZ9Q/z1g/qkA2QJUmSWlk/CGjr5igWkiRJUoUZZEmSpFZmBrlpZpAlSZKkCjPIkiRJrcwMctPMIEuSJEkVZpAlSZJamROFNM0AWZIkqUVFUvs4yNEPKjYssZAkSZIqzCBLkiS1Mm/Sa5oZZEmSJKnCDLIkSVLLSmirO4Pc+hlpM8iSJElShRlkSZKkVmYNctPMIEuSJEkVZpAlSZJamRnkphkgS5Iktaqk/gC5H8TbllhIkiRJFWaQJUmSWlntw7y1PjPIkiRJUoUZZEmSpJaVkG31H7PFmUGWJEmSKswgS5IktTKHeWuaAbIkSVKrSuq/Sa8fxNuWWEiSJEkVZpAlSZJamSUWTTODLEmSJFWYQZYkSWplZpCbZgZZkiRJqjCDLEmS1MrMIDfNAFmSJKllJbQ5k16zLLGQJEmSKswgS5Iktaqk/hKL1k8gm0GWJEmSqswgS5IktTJv0muaGWRJkiSpwgyyJElSK2szg9wsM8iSJElShRlkSZKkFpUkmfWOg5z9YBgLA2RJkqRWldRfYtH68bElFpIkSVKVGWRJkqRW5jBvTTODLEmSJFWYQZYkSWplbfXepNcfmEGWJEmSKswgS5IktTJrkJtmgCxJktSqMsm6Syz6QcBtiYUkSZJUYQZZkiSplfWDjG/dzCBLkiRJFWaQJUmSWlndU033A2aQJUmSpAozyJIkSa0snSikWWaQJUmSpAozyJIkSa0qk6y7BrkfjIphgCxJktTKLLFomiUWkiRJUoUZZEmSpBZWe4lFP2AGWZIkSaqI7AeF1updETE9GDBi2ICRfd0VtaKhg/u6B2pRq683p6+7oBY05bFZLFrQNiMz+/w/xYi4Mxjw0mGsUetxZzOTpO2uzHxZrQdeiVhioTrMTtqY1Tb18b7uyCpgQrl8sE97sSqZ3dcdWGX42mrSLH9S3eVrqzkbsvK8cz2YtDGL6b1y7N446MrCDLK0AkXEnQCt/KlbfcPXlnqLry31R9YgS5IkSRUGyJIkSVKFAbIkSZJUYYAsSZIkVRggS5IkSRWOYiFJkiRVmEGWJEmSKgyQJUmSpAoDZEmSJKnCAFmSJEmqMECWJEmSKgyQJUmSpAoDZEmSJKnCAFmSJEmqMEBWvxMRx0dERsRRfd2XRiJifNm/y
g3BkRj6zo8/Z3jV6TEXFZuW583/VMkvonA2RJkiSpYrW+7oCkpTwJvASY3dcdUZ96JzCM4vUgSVqBDJCllUxmLgDu6et+qG9l5mN93QdJ6q8ssVBLiYgNI+JHEXFfRMyJiOcj4saI+HJEjFzGvpuWtaDXRsQzETE/Ip6IiN9FxOad7LNxRPy8PN/s8nx3RsQvImKLDm23iojTI+KhiJgbEc9FxC0RcVJErFdp12UNckTsEhF/iognI2JeRDwdEf+JiPd1aLddRHw3Im4qzzWvPPfPImL9bv9QVZuIeF35+podEZMj4uwuXlsNa5Cbec2V7bv9NxERwyLiixFxR9l2WkRcERFvqfUHoW6rvh9ExMiI+EFEPBwRCyLipLLN2Ij4VkTcVfm9XRIRB3dx3MMj4
yNTQpIs6svAc2vEcjIraJiHMjYmpEzChfG/tHxN7lPqd1aL9eRHw6Ii4v36/ml++tf42In
o27CI+FxE3BwRM8vHdRHxruX+QUpNMkBWy4iIPYHbgI8Cg4BzgauBUcDxwIuXcYj3Al8ChgM3AP8ApgPvAG6IiG06nG9D4H/AB8tV/wIuB+YB7wN2q7TdoTzm24AZwN+B68p+fhxYKrDp5Bo/DlwDvBl4GvgrcAewFfC9Ds0/C3yi/PdVZf8C+BBwo0HyihURH6T4ve9C8Vq4CNgBuB6Y0M1jdPs1V7bv9t9ERIwArgC+CqwNnFe23Rk4IyJ+2NwVq2arU/yujwJuoXh/mlJ+wLqF4u99deAC4EaK19m5EfGpjgcq30fOBnYC/suSr8VNGp08InYDrgUOBh6leH0MBc4HDu+kz4cC3wHWoXgd/g14CjgMuDoiDmhwnrXL83wTWLe85iuALYHTIuLHnZxLqldm+vCxyj+AscBEIIFPAQM6bN8NWLv89/Flu6M6tNkV2KTBsY8u21/SYf1XyvU
DPRsCEyvPflm2PbdB2S2C9yvPxZdvLOrR7JdBGEbTv12HbasBrOqzbB1inw7oBFB8CEjilQV8SeKSvf5+t9gA2BuYA84EDK+sHAaeXP/clXpPAZeW68cv5muv230T5/Mftr3NgRIfX57PltoP7+mfZ3x6V94Ok+HA8urJtIEXgmcBx1d8xsCnwELAQ2Kqy/sUUH6jmAftU1q8GnNLJa3EAcG+5/v916N97Kvuc1mHb1sDLGlzTgeX5HwCiw7Z/lsc6CRhSWb8OxQfLBF7d178XH63/6PMO+PBRxwP4dPnG+e9utD2+438A3djnqjI4HVVZ97PyOId2Y/9/lW237U
9v8QL+vkGJ+p4ef1BDCpwXoD5F54VALb3zbYtiYwq0FQchlLB8jNvOaa+ZsYTnFT6CJgyw
P1oe66K+/ln2t0eHAHnHDtteX64/q5N9Dyu3/7Cy7uvlul83aD+a4huujq/FV5Xr7qPDB61y+1WNAuRlXFf7B8OtK+u2K9dd38l5ti+3/72vfy8+Wv/hTXpqFa8ql7/oyUEiYg3gEIo36rEUGT6A9SjKEyZQfMUNcFO5/GZELAIuzsy5nRz6JuAg4KcR8QXgqsxc2ES/VgP2Lp/+son91gReR1GCMZoi4wTFda0ZEWMz8/nuHk/Lbc9y+aeOGzJzckRcSBHsLEszr7lm/iZ2oPh6/sbMbHSD6O+BHwF7RMSAzGzrxjFVr6cz88YO69pLFP7ayT5XlsudK+v2KJdndmycmVPL12LHkon2fc7u5Hf/50qbJUTEEODVZR/GAYPLTVuXy82A28t/t1/POY3Ok5k3R8TMDtcj9QoDZLWKDcvlg8t7gIjYlyKAGddFsxGVf59G8Yb+JorazrkRcQNFTd4pmflMpe33gFdQBLmXAjMj4lqKrxNPy8xpy+jemhQBzPOZOaWb13MkRTC9xjKuxwC597XXez/ayfZHunmc0+j+a66Zv4n2/jXsRxk4TaOoXR4DTO5mf1WfRqOajC+Xf4iIP3Sx71qVf7ffEPx4E+dZnn2IiK0paqXHd9G36ntqe7tvRMQ3uthnaBfbpFoYIEu8kDn+C0XW+KsUgfKjwJzMzIj4I3AkRRYZgMxcBLw5Ir5NcTPKvhQ3xuwJfDYiXp2Z15Rtp5cB+B4UGeq9y
7A5+LiD0z8/4ar2djimAK4BiKQPzJzJxT
+GogY1Gu2vlVMzr7neOH0vHVfd0+ibgvYb7c+nqBPvzKT6u9O1iAiK99TxwMnl4yFgZvme+k3gcyz5HtR+PVfRg2SHVAcDZLWKxyluJprA4q
mrEnRZb2rMz8coPtnY6AkZk3AzcDx5fDZh1PMXrESVS+CszMpHjjvwpeuFv7JIrA+xsUWcHOTKK4yWtsRIzOzKnLuJ7XUHyVeUJmNhp9YFkjeqheT1OMVLIxcFeD7Rs3c7Buvuaa+Zt4qqt+RMQoihKdOUC3vsHQCvFEufx1Zp7dzX3aX4sb0vi1uGGDdU93sa2z9VuWjxsz80MNtjd6D2q/nnMy8/udnEtaIRzmTa3i4nL5/uXcf0y5fKLjhojYFHh5dw6SmdMpsiJJUffbVduJFIEN3Wi7iOKmLejeNXZ1Pa+kuCNcK057LehSH4IiYiyLay+b1sV
pm/iZsogt8dImKzBtvfXi6vtv54pXJRuTysiX2uLpdv6Lih/CDU6LXYvs9hZWa4o0Yf7rt6DxpD8e1ZR8tzPVKvMEBWq/g1RZb1oIg4puObeETsWmZsO3NfuTw8Il6oQY6I0cBvWHyzXvWY74iIRoHtQRRfGz5eafvBiGg0vuhrymVntX1V36EIgj4fEft06MtqEfGayqr263l7RAyvtNuA4qtOrVinUgxr9baIaL95jogYBJxIMYrEMjXzmqOJv4nMnEUxxNcAihtJq6+ZzYEvlE9/1J1+aoU5myIL/LYoJngZUt0YhT0ionoD3akUww2+s/yw3N52IPB9lqwJbncJcD9F5vnTHc5xFItvQq16gGLkn32rH7oiYijFe9DYjjtkZvuYzHtExE+jweROEbFtRLy6wfmkevX1MBo+fNT1oKjrnU4RRD5EcWf1Pyje2BPYrmx3PI3HQb6wXD+FYkD7v5X/vh84p9y2d6V9+7oHyrZ/pBjgvo1iuKw3VtreUra9EziLosa5fd0cYI9K2/E0GOat3Pap8vhJMSboH8t+PwtM
QbTDGBSFJ8PXoWxcD+syiyQVfTYQixcj+Heeu91+eHy5/vIoobNc8AHgamsnjIq6Mq7S
+Dtq5jXXzN9E2XYExQQTWb6e/kJRuz6HDkOF+Vihr5tO3w/K7ZuVv9v239tFwB8oJgxpH7/6mA77fLzyWrykfC0+SPF+9/ty21s77LMbi4cjvKV87f23fO39pFz/yw77/LJcP7t8/zkTeAZ4jiJQ
Q+vDbFSEHt78WXltdzHsXNgAmc1Ne/Fx+t/zCDrJaRmZcB21JkJ4Ji2Kw9gGkUk2Ms66aPQylqgZ+jyMjtQBHI7koRxHT0A+CnFOOG7knxteDaFEHILplZHUbpiywehH8/ihv1VqfI8m2XmVfTDZl5ArAXRXC0EXAExdfqtwPHVtrNL/v0c4qbew4GXkIxGcT+wILunE/1ycyfUrxGbqC4se5A4FaK19cD3TxMM6+5pv4mMnMGxWvryxSZ59eV57iRIlj6eHNXrBUhi5t7t6fI8j9B8Xo6HNicok79wxQfwKr7/JDivePGsv2BFEHvLiy+GXByh32uBXanCFQ3oXh9LKD4FuzaRvtQzNp5LMUHwf0oXk8XAzvSyYguWZSe7Q58jCI7vn3Z120oPggcB5zQ5Q9FqkFkemOyJEn9XVlmcRvFh+n1c8lhA7va72TgA8BbMvPPvdhFaYUxgyxJUj8SERPK+yuq64YA3wVeCvynY3AcEWMjYnyDY70ZeC/Ft2zn9VKXpRXOYd4kSepf3gh8JSJuorixcyRFKc56FOU1H2mwz+bAtRFxG0WpAxSZ5i0oapk/kMXNnlJLsMRCkqR+JCJ2Aj5JUX88jiJZ9iTFjX3fysylRtUpRzz5EsXkNOtTjLwyCbiGYrz1azvuI63KDJAlSZKkCmuQJUmSpAoDZEmSJKnCAFmSJEmqMECWJEmSKgyQJUmSpAoDZEmSJKnCAFmSJEmqMECWtFKLiOzwaIuIqRFxZUS8NyKij/t3VNmv4zusP61cv3efdGw5RcRlZ
Hd7N9w+tfznM/EhG9Pjj/qvq7kbTiGCBLWlX8tnz8AbgL2AP4FfDHvuxUb6oz+JQkdd9qfd0BSeqOzDyq+jwi9gf+BbwlIv6Qmef1Scc69zng28Bjfd0RSVJzzCBLWiVl5kXA78unr+/DrjSUmU9n5j2ZObuv+yJJao4BsqRV2c3lcsP2FWVJwiMRMTgivhQR90TEvIg4p9JmWER8LiJujoiZ5eO6iHhXZyeKiD0i4uKImFHWQF8QEbt00b7TOteIGB4Rn4mIGyNiekTMKvv504jYvGxzGXBqucuXO9RhH9XheC8pz/d4ea3PRsSfIuJlnfRtYER8qjzn3HK/H0bEyM6up1kRsV5EfDoiLo+IJyNifkQ8ExF/jYidlrFvRMTHI+Kusn9PRsSPImJ0F+2PjIhLImJKuc/dEXF8RAyr65ok9R+WWEhalY0ol/M6rB8AnAO8ErgcuA2YDBARawMXAdsAz5TbA9gdOC0idszMj1YPFhEHA3+jeM+8HngI2Ba4AjitmQ5HxHrl+V8GTAEuK/v/YuCDwP3AfcD55fn2AG4Fbqkc5oHK8V4P/AkYUra5juIDw5uAQyLioMy8okM3TgfeAswGLgQWAu8qz7WgmevpwqHAd4B7KX7+04HNgMOAgyPi4My8sJN9fwy8n+JnczuwF/BRYK+I2DMzp7c3jIgB5fUcCcwEbqT4ue4IfBk4KCL2zsw5NV2XpH7AAFnSKqkcveLg8ultHTZvSBF0bpGZT3bYdipFcPxD4DOZOa883jrAecBHIuKfmXl+uX4EcArF++W7M/PUyvm/BXymya7/niI4/gvwnsycWbmm8cBIgMz8dkQ8QxG0npOZxzf4GYynCA4XAAdn5sWVba8G/gGcHhGbZub8cv2bKYLjx4C9MvORcv3awH+AHZq8ns5cDWyVmXd26POBZb9+FhGbZWajUSveAeyWmTeV+6wB/B3YF/gqcEyl7bEUwfFlwJGZ+Uy5z2DgZ8B7KALlz9Z0XZL6AUssJK1SyvKAzSiC1t0oAuFTGzT9XMfgOCK2A14D3AB8sj04BsjMZymylgAfqux2BDAOuKI9OC7bJ/BF4Ikm+r4zsB8wEXhvNTguj/lIZnYM9rtyDDCc4lovrm4oA/yfU3xYeG1l0/+Vy+Pbg+Oy/UTguCbO3aXMvL1jcFyuvwA4E5gAbNXJ7j9pD47LfWZSZJATeE9EDAWIiNWATwOzgLe0B8flPvPLfZ4B3l9mmiWpW3zDkLRKaK+/pSgHuA84CphBkTV8sEPzBM5tcJgDyuU5mdnWcWNm3kzxNf3OldV7lss/NWi/ADirict4Vbk8IzNnNLFfZ9qv56+dbL+yXO4MEBGDgF3LdX/u2LgMqqfU0C/K8w2JiEMj4hsR8cuyTvo0YOuyyWad7NroZ30XRanJGsD25eqXA2sB15QfcDruMwe4CRjTxbkkaSmWWEhaVfy2XLZR1LPeDvw1MxsFdBOr2eGK8eXyGxHxjS7ONbTy7/XL5aOdtH2ki+N01H4zYceAfnmNL5dPRtfzpaxVLtcEBgPPdTG6xqMUAWWPRMTWFKUU47toNqKT9V39rLdj8e+k/dj7x7InGFmLoh5akpbJAFnSKqHjOMjLMLeT9e3fml1FfUFqX2q/nt922Qr+29sdqS
s/9CEcCeXD4eAmZmZkbENynGie7pLIjt1/8ARc1zVyb38FyS+hEDZEn9SXu98DmZ+f1u7vN0udy4k+2drW/k8XI5oYl9uvJEeaxjM7M7AeBkYD4wLiJW72Rkh41q6NeW5ePGzPxQg+0vXsb+G1N8Q9BoPcBT5bL993lPkx+gJKlL1iBL6k8uKpeHNbFPex3vmzpuKG8Se0MTx2q/ke7IcmSGZZlfLjtLZjR1PWXNdHs2udH1HACM7c6xlqG9RGOpGxgjYgyw/zL2b9S3LSnKK2ayeMi7G4BpFMO/1dFvSQIMkCX1I5n5X4qgco9yUo6lJsaIiG3LIdLanUmRed07KhOJlGUEX6GJjGtmXg9cCqwN/DIihnc49/iydrdde6Z0i04O+X1gDnBCRBze4FqGRMQREfGiyuqfl8uvRMRGlbZrAd
7rUswwMUteL7liOOtJ9jKEW5xbKC2Y9GRPuNeJSTffyYoiTj1PbMd1ln/l2KWua/RsRSmemI2CAi3tHD65HUz1hiIam/eTvFJBz/B7w1Im6hCERHUYyPvCHFGMnnA2TmjIh4D3A2xUQiH2LxRCGbAb8C3tfE+d9BMd7wkcCBEXEVxVB1EygypMeyuLzgOooh4Y6IYma9hygCz1My85rMfCAijgT+CJwdEQ8Ad1MMe7YBxSgPwylGfXiivJ4zIuIw4I3AXRHxH4qRQfYtj38di0e6WC6ZOTEifkPxc7k1Ii6hCOT3BAZSTK5yVBeHOB34b7nfNIoJX9YF7qQYWq/q2xTlHO8A7o6Im4GHKW5G3AJ4KcU42b9Hk
JDLKkfqUc73d34GPAXRTB4xEUwfFDFGMBn9Bhn78D+1Bkf7eiGFf4aYoZ3q5p8vxPAjsBX6IIWvcHDgKGUUxscV6l7dzyXBdRBM9HUUx8sXmHvm1T7pvl8V5LkaU+l6Jc4a4O3XgrxQQnTwKvpgiI/0gRJDca/WN5fIgi2H+YYuznPSlKTHak81Eq2n2M4ia+jSlm5Evgp8CemTmt2jAz2zLznWW7i4BNKMpeXkFxs+b3gHfXc0mS+otoPImRJEmS1D+ZQZYkSZIqDJAlSZKkCgNkSZIkqcIAWZIkSaowQJYkSZIqDJAlSZKkCgNkSZIkqcIAWZIkSaowQJYkSZIqDJAlSZKkCgNkSZIkqcIAWZIkSaowQJYkSZIqDJAlSZKkCgNkSZIkqcIAWZIkSaowQJYkSZIq/j/R2oE8O1c3wwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(1,1, dpi=150)\n",
"plot_confusion_matrix(gnb, X, y, display_labels=[\"classical\", \"disco\", \"reggae\"], ax=ax)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**1b**\n",
"\n",
"Compute the MFCCs for each recording using the default settings of li
osa. Then summarize the entire recording by taking the mean of the MFCCs across the recording as well as the mean and standard deviation across each recording. The resulting configurations will be just the mean (20 features per recording) and the mean and std (40 features per recording). Report on the 10-fold cross-validation classification accuracy and confusion matrix for these two configurations using the linear support vector machine and naive bayes classifier.\n",
"\n",
"(Minimum: 1 point)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"def compute_mfcc(folder):\n",
" mean = []\n",
" mean_and_std = []\n",
" \n",
" for filename in os.listdir(folder):\n",
" # Load audio file\n",
" path = os.path.join(folder, filename)\n",
" y, sr = li
osa.load(path)\n",
" \n",
" # Compute frame-by-frame mfcc\n",
" sc = li
osa.feature.mfcc(y=y,sr=sr)\n",
" mean_and_std.append((sc.mean(axis=1),sc.std(axis=1)))\n",
" mean.append(sc.mean(axis=1))\n",
" \n",
" return np.a
ay(mean), np.a
ay(mean_and_std)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"classical_mean, classical_mean_and_std = compute_mfcc('./a4_resources/GTZAN/classical')\n",
"disco_mean, disco_mean_and_std = compute_mfcc('./a4_resources/GTZAN/disco')\n",
"reggae_mean, reggae_mean_and_std = compute_mfcc('./a4_resources/GTZAN
eggae')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For Linear Support Vector Machine:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mean:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"X_mean = np.concatenate((classical_mean,disco_mean,reggae_mean),axis=0)\n",
"y_mean = np.concatenate((np.a
ay([0]*100),np.a
ay([1]*100),np.a
ay([2]*100)),axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(300, 20)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_mean.shape"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stde
",
"output_type": "stream",
"text": [
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n"
]
}
],
"source": [
"clf = LinearSVC()\n",
"y_pred = clf.fit(X_mean, y_mean).predict(X_mean)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stde
",
"output_type": "stream",
"text": [
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n"
]
},
{
"data": {
"text/plain": [
"a
ay([0.63333333, 0.76666667, 0.66666667, 0.86666667, 0.7 ,\n",
" 0.83333333, 0.9 , 0.93333333, 0.73333333, 0.76666667])"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scores = cross_val_score(clf, X_mean, y_mean, cv=10)\n",
"scores"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.78"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy = scores.mean()\n",
"accuracy"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a
ay([[73, 27, 0],\n",
" [ 0, 99, 1],\n",
" [ 1, 86, 13]], dtype=int64)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"confusion_matrix(y_mean, y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAIhCAYAAABT4Ew8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABcSAAAXEgFnn9JSAABbUElEQVR4nO3dd7hcZbX48e9KL4SE3knovXcQERUQpQjXAthQrNeCVyzXey3oVX9WxN4pFlSKoqAiINJRioD03kmAAAnpOclZvz/2HrJzMqdMsk9OMuf7eZ55ds7e7977nZPJZM2a9b5vZCaSJEmSCkMGugOSJEnSisQAWZIkSaowQJYkSZIqDJAlSZKkCgNkSZIkqcIAWZIkSaowQJYkSZIqDJAlSZKkCgNkSZIkqcIAWZIkSaowQJYkSZIqDJAlSZKkimED3QGt/CJiCjAGeGyg+yJJ0gDbCJidmesOdEci4o/AZv10+Qcy84h+uvaAM0BWHcYMGT5k3Cobjt92oDui9tPx7IiB7oLa1JAX5gx0F9SGZjOTpHOgu9Gw2YgRse3mk4bXetH7H+5g/vys9ZorGgNk1eGxVTYcv+0hv3r9QPdDbeixb2050F1Qm1rl7H8MdBfUhq7Li5nFCyvMN6qbTxrObVdMrPWaOxzwCHfeO7/Wa65oDJAlSZLaVtJZe0a7vbPH4CA9SZIkaTFmkCVJktpUAguz3gxy++ePzSBLkiRJizGDLEmS1MY6B0XOt15mkCVJkqQKM8iSJEltKqH2WSwGQz7aAFmSJKltJQuz7pC2/UNkSywkSZKkCjPIkiRJbcxBeq0zgyxJkiRVmEGWJElqUwksrDmDPBjy0WaQJUmSpAozyJIkSW3MGuTWmUGWJEmSKswgS5IktamE2udBHgz5aANkSZKkNlbvOnqDgyUWkiRJUoUZZEmSpDblNG9LxwyyJEmSVGEGWZIkqY0tHAwp35qZQZYkSZIqzCBLkiS1MWexaJ0BsiRJUpsqBulF7ddsd5ZYSJIkSRVmkCVJktpVQmfdKd9BkEI2gyxJkiRVmEGWJElqU9YgLx0zyJIkSVKFGWRJkqQ2VncGeTAwQJYkSWpTCXSmJRatssRCkiRJqjCDLEmS1MYssWidGWRJkiSpwgyyJElSm0qChTXnQ3MQZKTNIEuSJEkVZpAlSZLaWN2zWAwGZpAlSZKkCjPIkiRJbcqlppeOAbIkSVIbW5gWDLTK35gkSZJUYQZZkiSpbQWdtedD23/QnxlkSZIkqcIMsiRJUptykN7SMYMsSZIkVZhBliRJamPOYtE6A2RJkqQ2lUCnJRYt8yOFJEmSVGEGWZIkqW0FC53mrWVmkCVJkqQKM8iSJEltKql/kJ41yJIkSdIgYwZZkiSpjdW/1HT7M0CWJElqU5nBwqx5mrear7ci8iOFJEmSVGEGWZIkqY3VP81b+/M3JkmSJFWYQZYkSWpjnTVP8zYY+BuTJEmSKswgS5Iktansh6Wm06WmJUmSpMHFDLIkSVIbq3se5MHAAFmSJKlNJfWvpJe1Xm3FZImFJEmSVGEGWapBx786mPnBGb22G3XCaEa/YzQA86+aT8fl81lw70Ly2U5yZhLjgqFbD2Pk0SMZsd+I/u62VgIjh3ew59aPs992j7DTplNYZ7WZdHYGj09dlSv+vSm/+fuOzJk/fLFzrjn1R71e96Z71+dD3z+8v7qtNjBiVCfHfPBpDjjiedbeoIMZ04Zy4+XjOPOr6/HslOG9X0ArjIVO89YyA2SpBkPWGMKIQ7sJaDth/l/nAzBsp0X/5OZfNI+OKzoYsslQhm47jBgTdE5eyIJ/dLDgHx0sfMsoRr93zPLovlZgB+92P/99zJUAPDRlAlffPpGxo+azwyZP8c5Db+SVu97P+79zBNNmjn7xnD9fv2W319tn20dZbZW53Prguv3ed628ho/s5CtnP8C2u8/m2SnDuO7iVVlnww4OOeZ59nrlDE48bHOmPDpyoLsp9Zu2DpAj4mTgs8DbM/OMge3NkiJiEvAQcEVmvmw53zuBRzJz0vK8b7saOnEoYz+1StNjHdfNZ/5f5xPrDGHYrov+yY1622jGfHwsQ8Yv/sl+wR0LmHHiC8z95VxGHDSCoZu19T9T9WLBwiGcf+02nH3FDjzy1Gov7l9j1Vl87V0XsdVGUznxqGv53C9e8eKxL551YNN
TJ6Hq/Y5QEA/npj90G0dNyJT7Ht7rO588YxfPKYTZk7eygAR7/7Gd5z8pN85JTH+PjrNh/gXqovkqCz5mnZnOZN0jJrZI9HHjSCiEVvKsO2HLZEcAwwbLthjHjFSEjo+NeC5dZPrZj+csNWfO3sly4WHAM8+8JYvnHefgAcsONDDBu6sNdrHbjTg4wcvpDbH16bx6eO75f+auU3bHgnR7x9KgDf/Z8NXgyOAX7347V48I5R7LTvLDbfYfZAdVHqdwbIA+sJYBvgrQPdEfWPnJPMv7oIkEe8qoWvI8ukcZg8Vg/uf2INAEYOX8j4sXN7bX/I7vcBcNENZo/Vve32mM0q4zt58qERPHD7kmVeV/1pAgB7H/zCcu6ZltbCHFLrYzDwv98BlJkdwN0D3Q/1n/lXzIc5MHTLoQzdZGjvJwALH1hAx9/mwzAYtocDYdS99dcoBoZ2LBjCC7NG9dh2nQkz2GnTyXQsGMLfbt5seXRPK6lNt50DwP23jW56vLF/k216/1CmgZfQDyvptb+V9mNARGwUEd+OiHsjYk5EPBcRN0bEZyNi1V7O3TwiTo6I6yJiSkTMj4jHI+LnEdE0tRIREyPiB+X9Zpf3uyMifhQRW3Vpu31E/DIiHoyIuRHxTETcEhGnRsR6lXaTIiIj4vJu7rlXRPwmIp6IiHkRMTki/hYR7+rSbueI+GpE3FTea1557+9HxPp9/qWqdvP/Og+AEYd0nz2ef/V8Zn1hJrNOnsmM973AC8e/QM5LxnxiLEM37FtQrcHpDQfcBsA/796IjoU9v1YO3v1+hgyBf9y1ES/M7jmY1uC21gbFt17PTG7+AX1quX+dDecvtz5Jy9tKmUGOiP2BPwITgIeBC4DRwNbAycAfgFt6uMQ7gY8DtwM3APOAbYG3AEdGxP6Z+e/K/TYC/gWsDtwH/BkYCkwE3gVcB9xTtt0NuBoYBfy77MsYYFPgROB8YHIfnuOJwCkUH2JuAq4E1gR2BL4G/KTS/L+B/yjvd3W5b2fgfcBrI2L3zHyyt3uqXp1TO1lw0wIYCiMO6n7KtoX3L2T+Xy
0YyEMR8ew4hXOc2burfPNo9y2F5307FgCD/58x69tj9kt7K8wsF56sXosZ0AzJvTPIc2d/aQsl3vde9aASR01r2S3iBIIa90AXJErA6cRxEcfww4JTM7K8f3AXoLBs8HfpSZD3W59tuB04BTgZdXDr2TIjj+bmZ+sMs5GwPVj9kfogiOP5qZ3+jSdmtgei99IyJeCnwTmAkclZl/qxwbBhzc5ZQfASdm5lOVdkOATwGfA74AvKO3+6pe8y+dBwth2N7DGbJG91/WjD5+NKOPH03OSzqfWMi8389j9ldm03F1B2O/uAoxvP1HC6s1G6/9PJ9582UMGQLfPn9v7n9yjR7
7nhM2yy3vO8MHsE19w+cTn1UpJWXitdgEwRrK4FXJSZX+96MDOv6+0CmfmPbvafHhEnAC+LiPGZ2Qhm1yq3lzY559Euu3pq29d64/8GAvhiNTgur7GAIoNd3ff3JvfqBD4fEe8GjujjfXsUEXd0c8iCxiZenL3ikL5lgmNkMHTTYYw5aRgMgXnnzmPeuXMZdWzzOkANTmuOn8Up7/0zq46dx6
viPnXLlDr+c0Buf9/ZZNey3FkObMKj7Qjxzd2fT4qDGdZTtfSyuHqL0GmUEwzdvKGCC/stz2vlRUDyJiFeBwilKE1VmUBV6P4m9+M4qyCihKHAC+FBELgUszs7vRCTcBhwLfi4hPAVeXQW1f+zUMeFn5449bOG8NikB4e4rseuOdaziwRkSsnpnP9fV6WjYLH17IwnsXwmgY/tLWSyVGvGok886dR8dVHQbIetG4MXM59b1/Yr3VZ3LhP7fiu3/Yu9dzhkQnr3xx7uMt+ruLagPPPFG8Z621XkfT42uW+5963DIwta+VMUDeqNw+sLQXiIiXA79hUba3mXGVP59BUdbwBop657kRcQNwEXBaZk6ptP0a8BKKIPfvwMyIuA74E3BGJSvdnTUo6qmfy8zn+/h8jqUIppuvVLHo+SxTgJyZ23Vz/zsoarhVmn9ROTjvgBHEqNY/acf44pzOac0zOBp8Ro/o4Bvv+Qu
Pc8l9+6CV/5zUvpSxZn9y2fYM3xs5n83Crc+uB6vbaXHryz+FC++Q5zmh5v7H/oLgd7rgwS6Kx5arZBUIK88s5isbTKzPHZFAPePk8R2I0FhmRmAL9uNG2ck5kLM/ONwK4UNb03AHsBXwTujYh9K21foKhf3h/4KnBn+fOpwD0RUWsKJyImUgTwI4APA1sAYzIzyufTKDlp/+9DVhCZyfxLlmLu44oFNxdfOgzdwK8wBcOHLuTL77yI7SY+zT/u2pDP/vwVff4P7+CyvKLIHvs2oN7dccMYZk4fwvqbzGfT7ZYMkvd/zTQA/nFxjxNGaQWykKj1MRisjAHyY+V2aete96fI0p6XmZ/NzLsyc3ZmNj4QbdrdiZl5c2aenJkvpcg+f5MiM3tql3aZmVdn5icycy9gfYrAex2KoLonU4E5wOoRMaEPz+fVFMHxtzPzW5l5f2ZW39G6fT7qHwtuXUDnlE5irWDYbs2/pOl8vpN5f5xLzl3yc3jH9R3M+X6xQtWIVy9dgK32MSQ6+dxbL2X3LZ/klgfW5X9OO5gFfawjHjm8gwN2eBhwaWn13YKOIfzx9DUB+MCXHmfk6EWzVRz97mfYdLu53HrtWO6
clFRKR2sTKWWFwKHAS8m2I2ilY11mt9vOuBiNicIkvcq8x8ISI+SZG13b6Xtk9HxMnAsX1ou7CcF/lQiuf41V660tPzeSlFUK7lqDE4b8RBI4khzT9p59xk9ldmM/tbsxm21TBi7SEwJ1n42EI6HynKKka+cSQjDrTGb7D7j/3v4ICdHgZg+sxRfPT1Vzdt990/7M30WYvXq790h4cZM6qDOx9Zi0efntDPPVU7Oetb67DL/jPZbo/ZnH7N3dx+/VjW3qCDbXabzbSpwzjlIxv1fhGtEJLohxKL+rLIEbEHxaxkL6FIPs4CbqOYVeyMSgKz0X4oxYxh7wA2p5jx6+/AZzPz
6tTIGyD+l+EUeGhEfBr5V/eVFxN7Ag5n5dDfn31tuj46IL2XmM+V5E4CfsfiUbY1rvgW4OTNv73LoUIrvLB+rtH0v8NeuU8hRZHqptu3BV4BXAf8bETdUZ6loTPOWmY2ZLBrP580R8dPMnFW22wD4YR/upRrl/KTj72WA3MPsFUNWG8Lo/xxNx80L6HxoIZ13L4CEIWsMYfgrRzDyyJEM39VV9ATjxsx78c+NQLmZn120O9NnLb6vMXvFX29ycJ5a0zFvCB9
WYc88GnOfC1z7PPIS8wY9pQLv7tapz51XWZOtkP71p2EfEfwG8pJhb4F3AVRZC8P0XA/ErgTZX2Q4BzgKOAaRTju9YEXge8JiIOzMzr6+jbShcgZ+ZzEfF6ioVCvgl8qBwwNxrYhuLTxC5A0wA5M2+MiEsostD3VlaxexlFecMfgCO7nPYfwM8j4gGKTzVzgE0o6pA7KeY
ngv8IOIuBO4C1hAsYDJTsBci
n3p7jFRHxcYrs8WURcSPFAiVrltcZSTFTBeXv4Q5gd+D+iLiGYh7mAykWS7kW2BctFzEimHDRar23GxWMetNoRr2p16Ya5E67aHdOu2j3pTr3oz9+de+NpG7MnzuEn39tXX7+tXUHuitaRiti3XCZ8Ps+RXD8psw8q3JsG4qFz44rk3+NROE7KILj+4D9G+s/lIH2ucCvImKbVmYP687KWINMZl5OESj+kCKD+1pgP4pFOD5D7zNcHElRC/wMRRZ4N4pZLfam+ETS1SnA94AZFJ9qjgLWpvjUs1dmnlNp+2mKrwUSeAXFVHKjKTLfO2fmNX18jl8HDgB+D2xM8eloe4oA/aRKu/lln35AEYAfRvFB4TsUHwKaz9MjSZI0cLamiKXuqQbHAGWpxC/LH6tLhX6k3H68ujhaZp5HkTDcnCWTnEtlpcsgN5QlDO
pc3JFEtPd90/hyLr+6mux4Djy0e1/ZUUSz33pV8XUEwF15e2D9PDsPLMvIri64bervM88J/dHH5ZN+eseB8nJUlS7equQa7JvN6bAPAsQERsQpEAnENRWtHVuRTrQRxOseLyMlkhf2OSJElqaw9SfOO/VUQcVz1Qlli8GXie4pt0KCoHAG7PzGbfjjcWd9uxjs6ttBlkSZIk9SyBhf2zUMhm5UJhSx7vZmGxLm0WRsTbgAspaodPoqgtXpuidPRO4PjKKsAbl9slZu3qsn9iH55CrwyQJUmS2lbQWfsgvXqul5nXRERjvNWuLJpqdz5wCUWWuaGxWvDsbi7XmMdnXDfHW2KALEmSpFY90JdMcU8i4ljgdOAfFGtF3EGxuNpHKSYkODAi9s3MvtYr18YAWZIkqU31Y4nFMomILYAzKablPSwzZ5aH7gPeExHrU8zM9Q6Kmboax7tbwnFsuZ1RQ/ccpCdJkqTl7hiKxdkuqgTHVWeX25eW20fL7YbdXK+x/5E6OmcGWZIkqV0ldNY9s2sdKeRFAe30bo439jdW37q13G4fEcObzGTRqF/+dx2dM4MsSZKk5W1Kue1uqdDGAiEPw4vrX9xFsfjaa5q0f1257dNaFL0xQJYkSWpTCSxkSK2PehLI/KHcvjQiFlv4LSL2Bv6
PHcyqFTyu1XI2LtSvujKRYJub9y3WViiYUkSVLbivpLLGqY5i0z/xURX6eYseL7EfF+irmP1wf2oUji/jgzL62cdhrwauAo4O6I+BuwJnAAxQp7b87MBcvcOcwgS5IkaQBk5seAo4GLgXUpAt9tgSuA4zLzPV3adwKvp5gC7kmKWS52oFhaevfM/GddfTODLEmS1MY6V+B8aGb+nkXLSfel/UKKUotTemu7LFbc35gkSZI0AMwgS5IktalioZB6a5BrGqS3QjODLEmSJFWYQZYkSWpj9c9i0f4MkCVJktpW0Jl1Fwy0f8BtiYUkSZJUYQZZkiSpTRUr6TlIr1VmkCVJkqQKM8iSJEltzEF6rTODLEmSJFWYQZYkSWpTmdQ+i0UOgiJkM8iSJElShRlkSZKkNtY5COYtrpsBsiRJUtsKFtY+SK/9A25LLCRJkqQKM8iSJEltKumHQXq1Xm3FZAZZkiRJqjCDLEmS1MZcKKR1ZpAlSZKkCjPIkiRJbcxp3lpngCxJktSmikF69QbIDtKTJEmSBhkzyJIkSW0rap/mzYVCJEmSpEHGDLIkSVK7yn6Y5m0QFCGbQZYkSZIqzCBLkiS1qaT+ad4GQQLZAFmSJKmduZJe6yyxkCRJkirMIEuSJLUxM8itM4MsSZIkVZhBliRJalNJ9MNS0+2fkTaDLEmSJFWYQZYkSWpj1iC3zgyyJEmSVGEGWZIkqY3VvVDIYGCALEmS1KaS+kssBsNKepZYSJIkSRVmkCVJktpV9sMgvUGQQjaDLEmSJFWYQZYkSWpjTvPWOjPIkiRJUoUZZEmSpDblUtNLxwBZkiSpjaUlFi2zxEKSJEmqMIMsSZLUxlxJr3VmkCVJkqQKM8iSJEltyqWml44ZZEmSJKnCDLIkSVIbcxaL1hkgS5Iktavsh5X0BkGNhSUWkiRJUoUZZEmSpLYV/VBi0f4lG2aQJUmSpAozyKrFwocW8vx+zw10N9SGrnnyhwPdBbWpQ87dbaC7oHa0cKA7sDineVs6ZpAlSZKkCjPIkiRJbSwHQ8q3ZmaQJUmSpAozyJIkSW2scxDMOlE3A2RJkqQ25kp6
PEQpIkSaowgyxJktSmnOZt6ZhBliRJkirMIEuSJLWr7Idp3gZBCtkMsiRJklRhBlmSJKmNOYtF6wyQJUmS2lb0Q4Dc/gG3JRaSJElShRlkSZKkNlb3NG+DgRlkSZIkqcIMsiRJUptK6p/mbRDM8mYGWZIkSaoygyxJktTGnOatdQbIkiRJ7Sr7IUAeBDUWllhIkiRpwETEWhHx9Yi4JyLmRMRzEfGviPhaN+0Pj4grIuKF8nF5RLymzj4ZIEuSJLWxrPlRp4jYDbgLOAnoAP4A/ANYHfivJu0/DPwR2Be4BrgM2BO4MCI+UFe/LLGQJEnSchcRawEXAaOBIzPzj12O79nl562ArwPzgAMz87py/5bAtcA3I+KizLx/WftmBlmSJKmNZUatjxp9DlgT+FjX4Ljod17fZdeJwFDgh43guGx3L/BFisTviXV0zABZkiRJy1VEjAbeDMwCTu/jaY0643ObHGvsO3wZuwZYYiFJktTeVsxZJ3YHxgFXZ+aciDgUOAgYBdwLnJ2ZTzYaR8QEYOPyx5u7XiwzH4uIqcDEiFg1M19Yls4ZIEuSJGl527bcPh0R5wNHdjn+pYg4ITN/Xf7cCI6fz8xZ3VzzcYqSjYnAbcvSOQNkSZKkNtZPC4VsFhF3NL9fbteH81crt0cAC4H3A+cAY4APAB8FzoyIuzLzFmCVsv3sHq7ZCJzH9eH+PVrqADkiTluG+2ZmnrAM50uSJKkXCWTNJRY1Xa4xDm4Y8L+Z+f3KsY9FxETg9cDHgDfVc8u+W5YM8vHLcG4CBsiSJEkrpwf6mCnuzszKn5sN0judIkA+oEv7MT1cc2y5nbEM/QKWLUA+cFlvLkmSpP5U+9RsQC3Xe6Tczs7MZ5ocf7jcrl1uHy23q0XE2G7qkDfscu2lttQBcmZesaw3lyRJ0qDUmIlidESMzMx5XY6vXm5nAmTmtIh4lGKw3i7A1dXGEbERxQC9R5Z1BgtwHmRJkqT2lUBGzY8aupX5KHArRTr6gCZNGvuqU7r9qdy+rkn7xr4Llr13/RAgR8SwiDgyIr4YET+KiHdUjq0fETtGhLNnSJIkDW5fLbdfj4j1GjsjYmfgpPLHH1baf4tixov3RsTelfZbAP8LLCjbLLNaA9WIeAnwS2Ajik8ECQwHGjNe7AOcTVF0
s67y1JkqQl1T2LRV0y86yIOBh4G3BnRFwLjAb2BUYCP8nMcyrt74mIjwGnAFdFxCXAfODg8rwPZeb9dfSttgxyRGwLXASsB3wHeANLVnFfQDF/3X/UdV9JkiT1IGt+1OvtwLuBB4CXAXsC/wKOz8x3L/FUMr9JMXfydcD+wCuAG4HDM/M7dXWqzgzypymWB3x1Zl4MELF4fJyZ8yPiXxTF1ZIkSRrEMjOBn5SPvp5zATXVGnenzgD5QOD6RnDcgyeAnWq8ryRJk
RTyvptbU6B+lNAB7rQ7uxFHXJkiRJ0gqnzgzy08DmfWi3DX0LpCVJkrSsVtBBeiuyOjPIlwE7R0S3K+xFxFEUQfQlNd5XkiRJqk2dAfKXKabaOD8i3hcR6zYORMRq5XzIPwNmUUzPIUmSpH6WGbU+BoPaAuTMvBs4trzmdykG4yXF3HZTKUYnjgTelJkP1XVfSZIkdaPuKd76Z6q3FU6tK+ll5vnA9hTzIN8NzKXIKj8I/AjYMTP/WOc9JUmSpDrVvuRzZj4CfLju60qSJGlpDI6yiDrVmkGWJEmSVna1Z5AjYiTFUtL7A+uXu58ErgbOy8y5dd9TkiRJ3RgENcN1qzVAjohXAmcA67FkPv/dwFcj4vjMdJo3SZIkrZBqC5AjYi/gQmAE8E/g18DD5eGJFDNc7A1cEBEHZOY/67q3JEmSumEGuWV1ZpD/j2IJ6fdl5o+aHP9ORLwb+CHweeCQGu8tSZIk1aLOQXp7ATd2ExwDkJk/Bm6gyCRLkiSpv2XU+xgE6gyQO4H7+9Dufkz2S5IkLReZ9T4GgzoD5OuBHfvQbseyrSRJkrTCqTNA/jSwRUR8LiKWuG4UPgdsUbaVJElSf3OZ6ZYt9SC9iHhrk91nAp8C3hIR5wGPlPsnAkcDk4CfAFtRzHQhSZIkrVCWZRaLM2j+OSIoAuGTKserFd3vBt4F/HwZ7i1JkqTe9MfAukEwUG9ZAuTPM2gS7ZIkSRosljpAzsyTa+yHJEmS+kGYzmxZrUtNS5IkaQVjgNyyOmexkCRJklZ6tWeQI+IlwJEU07mNY/EBeg2Zma+o+96SJEnqYhAMqqt
QFyRATwM+BtLAqKk8UD5MbPJvslSZK0QqqzxOK9wPHATcBBwO/K/VsBh1JMC9cJfA3YtMb7SpIkqTsuFNKyOkssjgdmAYdm5rMR8WaAzLwPuA/4a0T8GfgtcC2LFhGRJEmSVhh1ZpC3Aa7NzGfLnxMgIoY2GmTmuRQZ5o/WeF9JkiR1xwxyy+oMkIcAz1Z+nl1uV+vS7j5ghxrvK0mSpGbqDo4HSZBcZ4D8BLB+5edGCcUuXdptCSyo8b6SJElSbeqsQf4X8IqIGJqZC4GLga8AX42IYykC6PcCuwF/q/G+0gpvxKhOjvng0xxwxPOsvUEHM6YN5cbLx3HmV9fj2SnDB7p7WsE9et9Izjp1HW69Zhwzpg1l9bUXsOcrp/OWk6Ywfo2FS7SfOzv43Y/X5u/nT2DKoyMZObqTrXaezRve/zQ77TtzAJ6BVjab7zCbXV/6AlvtPIutdp7NWut1AHDIhrsOcM+0VJzmrWV1Bsh/BN4IvAb4Y2beGhG/AY4B7qi0WwD8b433lVZow0d28pWzH2Db3Wfz7JRhXHfxqqyzYQeHHPM8e71yBicetjlTHh050N3UCuqWq1fhM2
hHlzhrLR5nPZZvdZPHL3KC44Yy2u++t4Tr3gPtZav+PF9nNmDeHjr9uce28dw7jVFrDLS2Ywa8ZQ
l6FW66fBz/9fXHOOTY5wbwGWll8KYTJ7Pvq6YPdDekAVNbgJyZv46I37F4+cTbgH8Dr6WoRb4X+GpmXl/XfVdUEXEy8Fng7Zl5RrnvcuAAYJPMfHig+qbl67gTn2Lb3Wdz541j+OQxmzJ3djFu9eh3P8N7Tn6Sj5zyGB9/3eYD3EutiObODr78/onMmzOUN/3XFN76sSkAZMJP/299zv3h2nzzpI340q8ffPGc0760HvfeOoYtdpzNF371ABPKDPMdN4zhf4
jO98ckN23n8G62zY0fSeEsBd/xrLQ3eP5p5bxnDvrWP5+XW3M2LUICg8bVPhX13Lal1qOjPnleUVjZ87MvPLmbl3Zm6VmYdn5lV13lNakQ0b3skRb58KwHf/Z4MXg2OA3/14LR68YxQ77TuLzXeY3d0lNIhd85cJPP/McDbcbC5vPmnKi/sj4O2ffJJ1NprHTVesygN3jAKgY37w19+sDsD7/u/xF4NjgO32mM2RJzxDx/wh/P4nay3fJ6KVztnfX5eff319/nlp8RqUBptaA2T16q0U0+E9MdAd0fKx3R6zWWV8J08+NIIHbh+zxPG
jQBgL0PfmE590wrg/v+PRqAHfaeyZAu79bDhsN2e8wC4Lq/jgeKWuV5c4YyfGQn2+6+5IeuRv1xo72kQcIZLFpWZw2yepGZjw50H7R8
tHADuv2100+ON/ZtsM3e59Ukrj7mzi6h4lfFLDsQDWHW1Yv+Dd45erP3YcQuJJmNyGu2nPDqSWTOGMHZcZ91dlqS2sNQZ5Ih4cBkeD9T5JAZSRBwREddFxOyIeDYizouILbtpe3lEZERM6rJ/YkT8ICLuLa/zXETcERE/ioitmlxno4j4dtl+Ttn+xoj4bESs2qXtmIj4dETcXradHhFXRsQxtf4i1NRaG8wH4JnJzb+inFruX2fD+cutT1p5jF+jGNLx9OMjmh6f8uiIxY5PKNtPf3YY8+YsGSFPeWzRdZ55ovk1JUnLlkGeVFcnVlYR8V7gBxRfOFwFTAb2Bq4HLujjNTaimCJvdYpFVP4MDAUmAu8CrgPuqbTfn2LGkAnAw+V9RgNbAycDfwBuKduOA/5OMbXeM8CFwFjg5cD+EbFPZp64NM9dfTN6bJGhmzen+WfRRsZv9NjmGUINbjvsPYvffBuu/9uqTH926GJTuk2dPJx/XTUOgDkzi9fR+pvMZ/V1OnjuqeFccs7qHPbWZxe7XqM+GWD2TCvspMHCQXqtW+oAOTMH9btrREwEvgl0AIdn5l/L/cOB04E39/FS76QIjr+bmR/sco+NgeGVn1cHzqMIjj8GnJKZnZXj+wBPVi7xJYrg+O/AkZk5o2y3NXAF8KGIuCQzL+zjc76jm0Ob9eV8Sa3Z7YAZbL7DbO6
QyfevNmvP9LjzNxy7k8dNcovv2JjVi4oMgSR/luHAFvfP9T/OAzG/LT/1uf4SOSfQ6ZzuyZQ/n9j9fi+kvHM3RYsnBBLFHTLElaxBrkpfcOYBTw80ZwDMXMHRFxInAUsOSorCU1hpNf2vVAk5rld5btL8rMrzdpf13jzxExFjgB6AT+sxEcl+3ujogvAN8GTqTILKsfzJlVRCEjRzev9Rw1prNsN7TpcQ1uEfCZnz3Ep9+yKffeOoYTX7Ooemu1tTp480lTOPMr6y1Wo3zkCVN58uGR/OG0tTjlIxtXrpW87ROTOf+nazL92eHd1jVLakMuFNIyA+Slt3+5/U3XA5n5bERcTDH/c29uKrdfioiFwKWZ2d2IrVeW2x/14bq7UZRe3JiZdzc5/guKAHm/iBhSzUR3JzO3a7a/zCxv24c+DTqNOs/GKlRdrVnuf6qbGlNpnQ07+MEl93DNX8Zz541jmTd3CJO2nMuBRz/PNX8uZqOYuNWit4wI+M8vPMEhxzzHdX9dlalThjNhzQW85NXT2XjLufzi6+syclQn602cN1BPSZJWeAbIS2/9cvtIN8cf7uN1zgAOBt5AUU88NyJuAC4CTsvMKZW2G5XbvgxybPSvaT8yc1pETAfGUyzi8myzdlo2jdkFNt9hTtPjjf0P3TVqufVJK5+hw+Clh0/npYcvvrLZnTeOBWi6fPRm289hs+0Xf93d9o+xdC4Mtt13JkN995cGh/6Ymm0Q1DRbhTbAMnNhZr4R2BX4HHADsBfwReDeiNi3P2/fj9cWxeplM6cPYf1N5rPpdksGyfu/ZhoA/7h41SWOST157ulhXP2nCay62gL2O3Ran875w2lFRder3zy1H3smSSs/A+SlN7ncTuzmeHf7m8rMmzPz5Mx8KUWd8TeBccCplWaPldu+DIprDNZr2o+IGE8x2G8O8HwrfVXfLegYwh9PXxOAD3zpcUaOXlT3efS7n2HT7eZy67Vjuf+2vpSrazB6+O5RzJ+7eP3gM08O5+S3b8LsmUN592efYOToRZ91p00dxtOPLz6t4MIF8POvrctVF05gp/1mLJGJltTmXCikZX7JtvSuAl5GURrxl+qBcraJg5f2wpn5QkR8EvgwsH3l0KXAQcC7gfN7ucxNFMHvbhGxRWbe1+V4Y5aNa/pSf6yld9a31mGX/Wey3R6zOf2au7n9+rGsvUEH2+w2m2lTh3HKRzbq/SIatM794dpc85fxbL7DbFZfewHTpg7jjhvG0jFvCMd9eAoHvWHxz7eP3DuKT7x+Mz
fg7
jyfTLjrprE899RwNt9+Np/68cMD80S0Utnz5dM57sOTX/x52IgiKjr1j4uGtJx16npcf5mrMq4MnOatdQbIS+904OPAmyLiV5l5Kbw4zds3KeYb7lVEvAW4OTNv73LoUCBYlDUG+CnF9G6HRsSHgW9l5osv+4jYG3gwM5/OzFkRcRrwfuB7EXFUZs4q220JfKo87dutPGm1rmPeED7++s045oNPc+Brn2efQ15gxrShXPzb1Tjzq+sydbID9NS9fQ+ZznNPD+OhO0dz5w1DWWX8QnZ/2QyOetczTWuP15s4j1e+/jnuvHEsN1w2jiFDYMPN5vG69z7NEW+fyvAR/k+p3o1fYwHb7LrkcuXVfY2FbKR2ZIC8lDLzoYg4Cfgu8NeIuBKYQrFQyGrAr4A39eFS/wH8vFxd8DaKrO8mFHXInSwKZMnM5yLi9RQLhXyTYh7jGyhmq9gG2BzYBXi6POWTZX8OAh6MiCtYtFDIKODbmdmnBU20bObPHcLPv7YuP
augPdFa1k9j10Ovse2veSiLU36OCjpz7We0OpB5ecswaXnLPGQHdDdfFzccv6rQY5IraIiH26W3a5HWTm9yjmO24MrDsEuJUiKL2/j5c5BfgeMINi6rijgLWB3wJ7ZeY5Xe55ObAT8EOKDPNrgf2A6cBnqMxwUc59fADwWWAqcER5jxuB41xFT5IkaUm1ZpAjYiRFMPZuiiwqwJkUi2oQEW8GPgK8IzNvqfPeAyUzz6d5PfDJ5aPa9mVNzr8SuLLFez4EvK+PbWcBny8fkiRpsDGD3LLaMsgRMRq4HPgEMB/4M0WGs+oyiuznG+q6ryRJklSnOkssPk5RZnAasGlmHt61QWY+CdzJohXhJEmS1I8i630MBnWWWLwReBR4X2b2NLT1HoqaWUmSJPWnBLLrF/o1XLPN1ZlB3gS4sZfgGIryi9V6aSNJkiQNiDozyHPoW+C7Ca7cJkmStHwMgoxv3erMIN8C7B4Ra3XXICI2oZin94Ya7ytJkiTVps4A+SfAOODXEbFm14MRMYFiAN9w4Mc13leSJElNBPUP0qu5onmFVFuJRWb+OiIOB46hWLXt2vLQfhHxB4oFK1YFfp6ZF9Z1X0mSJKlOda+k9yaKeZDnAgeX+7YADqeogPlf4O0131OSJEndyZofg0CtK+llZgJfi4hTgF2BSRRB+OPADZk5v877SZIkSXWrNUBuyMyFFAPxHIwnSZI0gAbL4h516pcAWZIkSSsIA+SW1RYgR8RpLTTPzDyhrntLkiRJdakzg3x8H9okxewgCRggS5Ik9af+GFg3CDLSdQbIB3azfwiwEcWsFscA3wQuqPG+kiRJUm3qnAf5il6a/Dwi/gScCfyxrvtKkiSpew7Sa13d8yD3KDN/DdwBnLw87ytJkiT11XINkEv3AbsPwH0lSZKkXi3Xad4iYgiwI9C5PO8rSZI0aFli0bLlkkGOiDERsTPwa4qlp3urV5YkSZIGRJ3zIC/sSzPgGeBjdd1XkiRJ3XOQXuvqLLF4jO6T+POByRSZ4+9l5tM13leSJEmqTZ3TvE2q61qSJEmqiRnkltVWgxwRR0TEoXVdT5IkSRoIdQ7S+z3woRqvJ0mSpGWVNT8GgTprkJ8Bnq/xepIkSVoW2Q+D9AZBkFxnBvlyYM+IiBqvKUmSpEEgItaIiKcjIiPi/l7aHh8R10fEzIh4LiL+HBH71tWXOgPkTwNrAt+MiFE1XleSJElLa+UpsfgGRSzZo4g4FTgd2B64FLgeOAi4MiJeW0dH6iyxOBb4M/BB4JiIuBR4FJjbpG1m5v/VeG9JkiStpCLiFcDbgB8D7+6h3SuBE4FngX0y875y/z4U1QynR8TlmTltWfqz1AFyRDwInJOZnyh3nUzxuSKAtYHjejg9AQNkSZKkfraiLxQSEaOBHwF3Al+nhwAZ+Ei5/UIjOAbIzOsi4ocUE0acQJGNXmrLkkGeBKxV+fnty9IRSZIkDUqfBTYFDgA6umtUBtIvL388t0mTcykC5MMZwAB5MZl5Zl3XkiRJUk1W4AxyROwInAScnplXRcSkHppvBYwEnsnMx5sc/1e53XFZ+1VnDbIkSZIGh80i4o5mBzJzu75cICKGAD8FpgEf78MpG5fbZsExmTkrIqYBq0XEuMyc0Zd+NGOALEmS1M5W3AzyB4E9gLdn5rN9aL9KuZ3dQ5tZwARgHDBgAfLOEfGZpTkxMz+/jPeWJElSD4L6B+mVC1480NdMcdNrRGwMfAG4IjPPqKVjNVrWAHmn8tGKoPgsY4AsSZI0OH0PGAG8t4VzZp
MT20GVtulzp7DMseID8AXLOM15AkSVJ/6I/FPeq53mEUtcc/7LIIc2OxuQ0i4vLyz8dk5hSK9TUANmx2wYgYS1Fe8fyy1B/DsgfIV2fmO5bxGpIkSRp8JlBM7dbMqMqxRtB8DzAPWCsiNsjMJ7qcs2u5/feydqzOpaYlSZK0olkBl5rOzGj2ADYpmzxQ2f9wec4c4LLy+OubXPZ15faCZe2fAbIkSZJWFqeU209FxBaNneVS0++hKNv42bLexGneJEmS2tiKvtR0KzLz0oj4FnAicEtEXEIx2O8giokg3p6Z05b1PgbIkiRJ7ayNAmSAzPxwRNwCfIAiMJ4PXAr8X2ZeW8c9ljpAzkzLMyRJklSbst44+tDuDOCM/uqHGWRJkqQ21k4lFsuLWWBJkiSpwgyyJElSOzOD3DIzyJIkSVKFGWRJkqR2teIuNb1CM0CWJElqY71OCaElWGIhSZIkVZhBliRJameDoCSibmaQJUmSpAozyJIkSW3MhUJaZwZZkiRJqjCDLEmS1M7MILfMDLIkSZJUYQZZkiSpnZlBbpkBsiRJUhtzkF7rLLGQJEmSKswgS5Iktauk/hKLQZCRNoMsSZIkVZhBliRJalNB/TXIUe/lVkhmkCVJkqQKM8iSJEntbBDUDNfNAFmSJKmNOc1b6wyQVZ8hQwe6B2pDZ88cP9BdUJsasu0WA90FtaN7/wbzBroTWlYGyJIkSe3MDHLLHKQnSZIkVZhBliRJamdmkFtmBlmSJEmqMIMsSZLU
IfZrEYBBlpA2RJkqR2NggC2rpZYiFJkiRVmEGWJElqY5GmkFtlBlmSJEmqMIMsSZLUzkwgt8wMsiRJklRhBlmSJKmN1T7N2yBgBlmSJEmqMIMsSZLUzswgt8wAWZIkqV25kt5SscRCkiRJqjCDLEmS1M4GQca3bmaQJUmSpAozyJIkSW0qqL8GOeq93ArJDLIkSZJUYQZZkiSpnVmD3DIDZEmSpDbmSnqts8RCkiRJqjCDLEmS1M7SFHKrzCBLkiRJFWaQJUmS2pVLTS8VM8iSJElShRlkSZKkdjYIMr51M0CWJElqY9E50D1Y+VhiIUmSJFWYQZYkSWpnlli0zAyyJEmSVGEGWZIkqY251HTrzCBLkiRJFWaQJUmS2lVS/1LTgyAjbQZZkiRJqjCDLEmS1MasQW6dAbIkSVI7M0BumSUWkiRJUoUZZEmSpDYV1F9iEfVeboVkBlmSJEmqMIMsSZLUzuqe5m0QMIMsSZIkVZhBliRJamNO89Y6A2RJkqR2ldQ/zdsgCLgtsZAkSZIqzCBLkiS1MUssWmcGWZIkSaowgyxJktS2EjotQm6VGWRJkiSpwgyyJElSO2v/hG/tzCBLkiS1sch6H7X0KWJMRLw2In4WEfdExNyImBURt0bEZyJilR7OPT4iro+ImRHxXET8OSL2radnBQNkSZIkLW/HAb8H3gEsBP4IXAVsAnwOuCEi1u56UkScCpwObA9cClwPHARcGRGvratzllhIkiS1qwSy5hqLei7XAfwYODUz72rsjIj1gD8BuwCnUgTSjWOvBE4EngX2ycz7yv37AJcDp0fE5Zk5bVk7ZwZZkiRJy1VmnpmZ76kGx+X+ycD7yx+PjogRlcMfKbdfaATH5TnXAT8EJgAn1NE/A2RJkqQ2tiLWIPfi1nI7ElgDICJGAy8v95
5JzGvsPr6IABsiRJklYkm5
DuC58s9bUQTMz2Tm403O+Ve53bGODhggS5IktbOs+dH/Tiy3F2XmvPLPG5fbZsExmTkLmAasFhHjlrUDDtKTJElSqzaLiDuaHcjM7Zb2ohHxaoo64g7g05VDjWnfZvdw+iyKOuRxwIyl7QMYIEuSJLW1qHsWi34SEVsDvwQC+Fhm3trLKf3GAFmSJKmddfbLVR9YlkxxVxGxAXARsBpwSmZ+q0uTmeV2TA+XGVtulyl7DNYgS5IkaQBFxOrAxcBEikVAPtqk2aPldsNurjGWorzi+cxc5gDZDLIkSVKbKqZmq7fEos6p3solpf8CbAv8DnhXZtMO3wPMA9aKiA0y84kux3ctt/+uo19mkCVJkrTcRcRI4A/AnsBfgWMzc2Gztpk5B7is/PH1TZq8rtxeUEffDJAlSZLa2Qo4zVtEDAV+TbH4x1XA0Zk5v5fTTim3n4qILSrX2gd4D8U0bz+ro3+WWEj9bPMdZrPrS19gq51nsdXOs1lrvQ4ADtlw117OlArP/HsEt/1sPE/dNIo5zw1l+OhOVtuygy1fN4Mtjp5JxJLndMwKbjttPA9fPJYZjw0jhsDY9Raw3h5z2eNjzzF87Moxql39Z/MtnmOXXZ9iq62eZautnmPNteYAcOjBb2zafq+9n+Al+z/OZps/z+qrz2Hs2A5mzhzBffeuzoUXbM71/1x/eXZfK78PAEeVf54KfD+avZnBRzNzKkBmXhoR36KYJ/mWiLgEGAEcRDHzxdszc1odnTNAlvrZm06czL6vmj7Q3dBK6qG/juHvH16bXBissd081tltLnOfH8qUG0fx1E2jePLa0bzsG88sds6Mx4bxl7ety4zHhzNuow42fOkcOufD9IeGc9dZq7LTe6cxfGzTbzE1iBz7pjvZd9+uZZzde+VBD7Pvfo/zyCPjuefuNZgzZxj
DOLPfaczB57TuY3v96GM0+vZREz1W3FnOZttcqfj+q2FZxMEUADkJkfjohbKALsg4D5wKXA/2XmtXV1zgBZ6md3/WssD909mntuGcO9t47l59fdzohRK+SblVYwnQvg2pPXJBcGL/vG02x2+KwXj027fzgXHrceD1ywClu+fg
7z0XgIXz4a/vXIeZk4ex3+ensvUxiw/mfu7e4Ywc3z9zPmnlcveda/Dwg+O5997Vufee1TnjFxcyYkT3r43fnLUt3z51d2bMGLnY/q22fpYvffly3vDGu7ji7xvz8MMT+rnnalWdg+rqkpknUwS/S3PuGcAZ9fVmSQbIUj87+/vrDnQXtJKa9uBw5j47lPGbzF8sOAaYsHkHmx0xkzt/Pp6pt418MUC+48zxTH9oBDu8c9oSwTHA6lt2LJe+a8V3ztnbtNT+gQdWa7
nrvX4MorNuJVhz7Ejjs
YCstmCALEkrqKEj+pb2GTlhUbnEPWePA2Dbt7zQL32Smlm4oBjzv6DDsf8rpBWzxGKFZoAsSSuocRstYNzGHUx/aAQPXDB2iRKLB/64CiPGL2TSQbMBmDl5KC88Mpyx6y5glfUW8tRNI3nksjF0zBjCKhsuYJNDZrHqxAUD9XTUpiZNmsZLD3iMjo4h3PwvvzFTexh0AXJETAIeAq4AjqCofzmKYmWW75XF36sDHwOOBDahKAC/iWLpwwu7ue7RwMeBHYHZwN+BTwJvBj5LMbLyjC7n7Ah8EdgfGArcDPwf0FGef2ZmHl9pvx7wFuA1wObAWsBzwLXA/8vMG7rp2xiKEZ9vABrTotwO/CAzz+zxFyZpwAwZCgd85Rkufs86XH7S2tx22jxWndjB3OeKQXq
Taf
8ylZETi
RafePAGDM2gu49uQ1uOusVRe73k2nrsYeJz3HDieYXdbS22vvJ9jvJY8zbFgna601m222fZaFC4Nvn7o7kyevMtDdU1cJUfewg0GQkB50AXLFaIogeWK5/RfwfERsSTEaciPgYYqJq8cBewMXRMTHMvPr1QtFxInAqRSrnV8JTAH2Aq6nmwmryzn7LqVYU/zfwJ3AZhTrkH+vmz4fCXyFYjWZfwMvUAS8RwGHRcRhmXlxl/usDVxCEbhPKZ9rAPsCZ0TE7pn5wR5/U5IGzDq7zeM1v5zMpe9fh2fvGMmzdxQDpIYMT9bfby6
Sopnje9OLr7al3jmTq7SPZ5YPPs9XrZxBD4f7zV+HGb67G9V9Zg/GbdrDxgXMG5Plo5bfJptM46OCHX/x57tyh/OgHu/C3SycNWJ+kug3mAHlP4Dpg08aceeWk1TdTBMcfB76RmZ3lsc0p1gn/ckRclJm3l/s3Bb5KkWV+VWb+vdw/DPgx8PauN46IIRSjL8cA/5uZX6ocOwH4aTd9vgbYPjPv6HK9Q4A/UswhuEWXJRpPpwiOvwV8IjPnleesA1wIfCAi/pSZF/X6G5O03D1w4Viu+u81WWvneRx4ytNM2KKD2U8P5bafjef208Yz+Z+jOPy3TzJ0BC9mdXJBsPVxL7DrB6e9eJ0d3zWduc8P4bafTuDWH00wQNZS+81Z2/Gbs7Zj+PCFrL/BDF5z2AOc+F83svc+T/KFz+/LggVDB7qLWkz2Qw1y+6eQB3s1/Ye6TCh9OLADcF5mfq0RHANk5v3ASRSlEO+qnPMOikmqf9EIjsv2C4CPADOb3PflwJbAfcCXqwcy82cUgfASMvO2rsFxuf+vwDkUGejtG/sjYmfg1cANwEcawXF5zlPAu8sf39fsfl1FxB3NHuV9JdVs+sPDuPITazFytU4O/tFTrLXTfIaPScZPWsBL/u9ZNjpwNs/eMZJ7zy0G5g0bs+g
S2PXnIGiy2PLt6Onrl1JAvmNZ2QX+qzjo6hPPLwBL7/3d34w/lbsNfeT3LEkfcNdLfUzAq4kt6KbjAHyJMz88Yu+w4ut7
5pyryu2elX37ldtzujYug++Lu+6vnHNeNQiv+G039yciRkbEkRHxxYj4cUScERFnUAT2sKjGGBY9n/Ob3Sczb6YI4PfsekzSwHvwT6vQ2RFsuP+cpivfbXJoMWhvyg2jAFhl/UUD8FbZcMnBeI19uTCYN20wv/2
pddOhGAvfd9coB7ItVjMJdYPNpk36Ry+6uI+FUP565Z+fN65faxFu6zNOcQETtQlFJM6qFv4yp
T7YkR8sYdzRvVw7EWZuV03
oD2LYv15DUd7OmFF9VjxjXfIRNY/+8F4pgd8Jm8xk6spOF84Ywf/oQRq+++HnVoHj4WBcLUX2mv1DUxo8fP3eAe6JmwmneWjaYA+Rm/4o
3tcBDzVw7lTezjWL6JYoPxsiqD3h+XjQWBmZmZEfIli1ozq96aN53M18MDy662kOoxZs5jfeOrtI5oen3pbsX/cBkVmeOgI2OAlc3j0b2OZ/M/RjN9k8TKLRqZ53EYdjFjF/zBVnx12KJY7n/yks1ioPQzmALmZx8vtTzPzvD6eMxnYimJg351Njm/UzTndHetu/9bl48bMbFYzvGmTfY3nc35mfqObe0laQW38ytnc/L3VmHLDaO46axzbHLco4H36lpHcfsZ4ACYdsmh+5B3fNZ1H/zaWW74/gfX2msP4TYrgecZjw7jp1GIltK2PXbI+WerJ+PFz2WffJ/j7ZROZN2/x0GGXXadwwrtuBeCSizcZiO6pN2aQW2aAvLhLgBMopk3ra4B8DfAy4D8opoR7UUSMZ1EdcNdzAI6KiP/pMusEFPMVd9VY4/PxrgciYjXgoCbnXEIx
JRgAHyANnz5dM57sOTX/x5WLk62ql/vPvFfWeduh7XXzZ+ufdNK7Y1t5vPDidM47afTeDak9fkzl+tymqbz2f2U8N4+paRZGew1RtfYIP9Fn0hts6u89jl/c9z8/dW4/zXbsDau85jyJDkqX+NomPWEDZ86Wy2f/v0AXxWWlHsseeTHPemReO+hw0rym6++a1LXtx31q+244
12fkqIWc+F838p733cx9963O1GdGM2rUAjbYcAY
1x84PrdeVtyzdXd5X2klYsB8uLOo8gCvyki7gG+Wp35oSxz2BcgMxtB7ukUi4q8NSJ+mZlXlm2HUgSl1ZrghssoZrDYimI6ua9U7nE8xcIhXd1PMc/yy8up3O4r24+iKLdYvesJmfnPiLgEOCgivgd8MjMXWyEgInYC1nOat/4zfo0FbLPr7CX2V/eNX8PVzdTcnp94nrV3mcfdvxnH1NtHMv2hsQwf28m6e85lqzfMYLPDZi1xzq4nTmP1redz+5njeeaWkXQuhPGbdLDFUTPZ9s0vMMRZuASMHz+P
d5bon91X3jxxf/BU6fNpKf/mQndtzxaSZOnM4WWzzHkCHJc8+N5vK
8yf/7QZt/177eXWd7UgKaKHuq/Z5gyQKzJzQUS8liIT/HmKOYL/DTxNMTBvZ2Bt4L8os8CZ+UBEfJxioZC/R8QVFPXLe1IE
+kWE1vfuU+nRHxNoqFQr4cEceyaKGQPSgWCnl/l3OejoifUUwxd2tEXAbMYdEqfGcAxzd5Wm+mqKn+T+C4iLgFeBIYTzE/8kYUcyQbIPeTS85Zg0vOWWOgu6GV2KSDZzPp4CU/ZPV4ziGzmXRIa+docLn0kk249JK+lUTMmzeM887ZmvPO2bqfeyWtGJznp4syM7sL8CmKcoa9gaMp5i2+mSJw/WWXc74FvA64sWx/CHALxWp6je8+n+1yznUU2egLKZazPoJiielXUyxgssQ5FPMVn0SxVPYrKILjS4HdgUe6eT5Pl/f5EEUQvkvZ1x0pBvl9DPh6s3MlSdLKLzJrfQwGgy6DnJkPs/hMD83aTAe+WD76et3z6FK3XJZZ7EvxZcStTc65lWJxErqc98Pyj7d0ab8QOKV8dHVy+WjWt7nAd8qHJEkaTAZJUFsnM8g1iIjNImJCl30jKZag3hb4W2ZO6XJ89YiY1ORabwTeCUyjyC5LkiRpORp0GeR+8nrgcxFxE8XiH6sCO1EsCDIV+ECTc7YEritrnB8s921DMXBvIfCezFxy9I0kSVIrzCC3zAxyPf5GsTz1esBrgAMpBtD9ANg1M+9pcs6DFIPxhpftD6MYOPc7YP/MPHs59FuSJEldmEGuQWbeABzb4jlP0zyzLEmSVB9Xlm+ZGWRJkiSpwgyyJElSu+qPqdkGQU2zAbIkSVI7GwQBbd0ssZAkSZIqzCBLkiS1MzPILTODLEmSJFWYQZYkSWpnZpBbZgZZkiRJqjCDLEmS1M5cKKRlBsiSJEltKpLa50GOQVCxYYmFJEmSVGEGWZIkqZ05SK9lZpAlSZKkCjPIkiRJbSuhs+4McvtnpM0gS5IkSRVmkCVJktqZNcgtM4MsSZIkVZhBliRJamdmkFtmgCxJktSukvoD5EEQb1tiIUmSJFWYQZYkSWpntU/z1v7MIEuSJEkVZpAlSZLaVkJ21n/NNmcGWZIkSaowgyxJktTOnOatZQbIkiRJ7Sqpf5DeIIi3LbGQJEmSKswgS5IktTNLLFpmBlmSJEmqMIMsSZLUzswgt8wMsiRJklRhBlmSJKmdmUFumQGyJElS20rodCW9VlliIUmSJFWYQZYkSWpXSf0lFu2fQDaDLEmSJFWZQZYkSWpnDtJrmRlkSZIkqcIMsiRJUjvrNIPcKjPIkiRJUoUZZEmSpDaVJJn1zoOcg2AaCwNkSZKkdpXUX2LR/vGxJRaSJElSlRlkSZKkduY0by0zgyxJkiRVmEGWJElqZ531DtIbDMwgS5IkSRVmkCVJktqZNcgtM0CWJElqV5lk3SUWgyDgtsRCkiRJqjCDLEmS1M4GQca3bmaQJUmSpAozyJIkSe2s7qWmBwEzyJIkSVKFGWRJkqR2li4U0iozyJIkSRoQETE6Ij4fEfdGxNyIeDIiTouIDQayX2aQJUmS2lUmWXcNck2zYkTEKOAyYG9gMvAHYBLwduCwiNg7Mx+s5WYtMoMsSZLUzrKz3kd9PkURHF8HbJmZb8zMvYCTgLWA0+q8WSsMkCVJkrRcRcQI4APlj+/PzJmNY5l5CvBv4ICI2G0g+meALEmS1MayM2t91GQ/YDzwQGbe3OT4ueX28Lpu2AoDZEmSJC1vO5Xbf3VzvLF/x+XQlyU4SE912Gg2M7lu4V8Guh9qQ3cdOn+gu6A2Ne2xRwa6C2pDs+c/D7DRQPejYTYzua7zotqvCWwWEXc0O56Z2/XhMhuX28e7Od7YP7G13tXDAFl1mJ10MosXHhvojqwENiu3DwxoL1Yis+4f6B6sNHxttWzuQHdgZeFrqzUbAbMHuhOlB8
n/vj2sv6IWCVctvd72pWuR23jPdZKgbIWmaZue5A92Fl0fi03cdP11Kf+dpSf/G1tfLKzCMGug8rK2uQJUmStLw1Zq0Y083xseV2xnLoyxIMkCVJkrS8PVpuN+zmeGP/gAwWMECWJEnS8nZrud21m+ON/f9eDn1ZggGyJEmSlrdrgOkUs2Hs3OT468rtBcutRxUGyJIkSVquMnM+8N3yx+9FRKPmmIj4CMX8x1dk5k0D0
IrG1FFEmSJKlPImIUcDmwFzAZuIpi3uO9gGeAvTPzwQHpmwGyJEmSBkJEjAY+CRxHMbfyc8BFwKczs7tFRPq/XwbIkiRJ0iLWIEuSJEkVBsiSJElShQGyJEmSVGGALEmSJFUYIEuSJEkVBsiSJElShQGyBp2IODkiMiKOH+i+NBMRk8r+XT4A986IeHh533ewa/aajIjLy32TBq5nkjQ4GSBLkiRJFcMGugOSlvAEsA0we6A7ogH1VmAMxetBkrQcGSBLK5jM7ADuHuh+aGBl5qMD3QdJGqwssVBbiYiNIuLbEXFvRMyJiOci4saI+GxErNrLuZuXtaDXRcSUiJgfEY9HxM8jYstuzpkYET8o7ze7vN8dEfGjiNiqS9vtI+KXEfFgRMyNiGci4paIODUi1qu067EGOSL2iojfRMQTETEvIiZHxN8i4l1d2u0cEV+NiJvKe80r7/39iFi/z79U1SYijihfX7Mj4tmIOK+H11bTGuRWXnNl+z7/m4iIMRHx6Yi4vWw7PSKujIhjav1FqM+q7wcRsWpEnBIRD0VER0ScWrZZPSL+X0TcWfl7uywiDuvhukdHxD/K19DUiDin8h7YdIxGROwYERdExLSImFG+Ng6KiJeV55zRpf16EfHxiLiifL+aX763/i4i9uihb2Mi4pMRcXNEzCwf/4iIty31L1JqkQGy2kZE7A/8G/ggMBy4ALgGGA+cDGzayyXeCXwGGAvcAPwReAF4C3BDROzY5X4bAf8C3lvu+jNwBTAPeBewT6XtbuU13wTMAP4A/KPs54nAEoFNN8/xROBa4I3AZOB3wO3A9sDXujT
+C/yj9fXfYvgPcBNxokL18R8V6Kv/e9KF4LlwC7AdcDm/XxGn1+zZXt+/xvIiLGAVcCnwfWBi4s2+4J/DoivtXaM1bNRlP8XR8P3ELx/vR8+QHrFop/76OBvwI3UrzOLoiIj3a9UPk+ch6wB/BPFn8tbtLs5hGxD3AdcBjwCMXrYxRwEXB0N30+EvgKsA7F6/D3wJPAUcA1EXFwk/usXd7nS8C65XO+EtgaOCMivtPNvaR6ZaYPHyv9A1gdeBpI4KPAkC7H9wHWLv98ctnu+C5t9gY2aXLtt5ftL+uy/3Pl/u80OWdjYLPKz2eWbU9q0nZrYL3Kz5PKtpd3afdSoJMiaH9Fl2PDgFd32XcgsE6XfUMoPgQkcFqTviTw8ED/f
A5gIzAHmA4dU9g8Hfln+3hd7TQKXl/smLeV
s
Jsqfv9N4nQPjurw+nyqPHTbQv8vB9qi8HyTFh+MJlWNDKQLPBD5W/TsGNgceBBYA21f2b0rxgWoecGBl/zDgtG5ei0OAe8r9/9OlfydUzjmjy7EdgO2aPKdDyvvfD0SXY38qr3UqMLKyfx2KD5YJvGqg/158tP9jwDvgw0cdD+Dj5RvnX
Q9uSu/wH04Zyry+B0fGXf98vrHNmH8/9ctt2pD20
yFe3s01PlHD7+txYGqT/QbI/fCoBLZnNjm2BjCrSVByOUsGyK285lr5NzGWYlDoQmDrJsc/WF7rkoH+XQ62R5cAefcux15b7j+3m3OPKo9/q7LvC+W+nzZpP4HiG66ur8VXlvvupcsHrfL41c0C5F6eV+OD4Q6VfTuX+67v5j67lMf/MNB/Lz7a/+EgPbWLV5
Hy3LRSJiFeBwijfq1SkyfADrUZQnbEbxFTfATeX2SxGxELg0M+d2c+mbgEOB70XEp4CrM3NBC/0aBrys/PHHLZy3BnAERQnGBIqMExTPa42IWD0zn+vr9bTU9i+3v+l6IDOfjYiLKYKd3rTymmvl38RuFF/P35iZzQaI/gL4NrBfRAzJzM4+XFP1mpyZN3bZ1yhR+F0351xVbves7Nuv3J7TtXFmTitfi11LJhrnnNfN3/1vK20WExEjgVeVfVgLGFEe2qHcbgHcVv658XzOb3afzLw5ImZ2eT5SvzBAVrvYqNw+sLQXiIiXUwQwa/XQbFzlz2dQvKG/gaK2c25E3EBRk3daZk6ptP0a8BKKIPfvwMyIuI7i68QzMnN6L91bgyKAeS4zn+/j8zmWIphepZfnY4Dc/xr13o90c/zhPl7nDPr+mmvl30Sjf037UQZO0ylql1cDnu1jf1WfZrOaTCq3v4qIX/Vw7pqVPzcGBD/Wwn2W5hwiYgeKWulJPfSt+p7aaPfFiPhiD+eM6uGYVAsDZIkXM8dnU2SNP08RKD8CzMnMjIizgGMpssgAZOZC4I0R8WWKwSgvpxgYsz/w3xHxqsy8tmz7QhmA70eRoX5Z2f4g4JMRsX9m3lfj85lIEUwBfJgiEH8iM+eUx6+lqEGNZudrxdTKa64
t9P11XfNPumoDHQ/iKKOvHuTK2/Oz2LiKB4T50E/LB8PAjMLN9TvwR8ksXfgxrP52qWIdkh1cEAWe3iMYrBRJux6Ou6VuxPkaU9NzM/2+R4tzNgZObNwM3AyeW0WSdTzB5xKpWvAjMzKd74r4YXR2ufShF4f5EiK9idqRSDvFaPiAmZOa2X5/Nqiq8yv56ZzWYf6G1GD9VrMsVMJROBO5scn9jKxfr4mmvl38STPfUjIsZTlOjMAfr0DYaWi8fL7U8z87w+ntN4LW5E89fiRk32Te7hWHf7ty4fN2bm+5oc
Ye1Hg+52fmN7q5l7RcOM2b2sWl5fbdS3n+auX28a4HImJzYNe+XCQzX6DIiiRF3W9PbZ+mCGzoQ9uFFIO2oG/Psafn81KKEeFafhq1oEt8CIqI1VlUe9myHl5zrfybuIki+N0tIrZocvzN5fYa649XKJeU26NaOOeacvsfXQ+UH4SavRYb5xxVZoa7avbhvqf3oNUovj3rammej9QvDJDVLn5KkWU9NCI+3PVNPCL2LjO23bm33B4dES/WIEfEBOBnLBqsV73mWyKiWWB7KMXXho9V2r43IprNL
qcttdbV/VVyiCoP+NiAO79GVYRLy6sqvxfN4cEWMr7Tag+KpTy9fpFNNavSkiGoPniIjhwDcpZpHoVSuvOVr4N5GZsyim+BpCMZC0+prZEvhU+eO3+9JPLTfnUWSB3xTFAi8jqwejsF9EVAfQnU4x3eBbyw/LjbZDgW+weE1ww2XAfRSZ5493ucfxLBqEWnU/xcw/L69+6IqIURTvQat3PSEzG3My7xcR34smiztFxE4R8aom95PqNdDTaPjwUdeDoq73BYog8kGKkdV/pHhjT2Dnst3JNJ8H+eJy
MUE9
vvzzfcD55bGXVdo39t1ftj2LYoL7Torpsl5faXtL2fYO4FyKGufGvjnAfpW2k2gyzVt57KPl9ZNiTtCzyn4/BUyrtBtBsYBIUnw9ei7FxP6zKLJB19BlCrHyPKd567/X5/vL3+9CioGavwYeAqaxaMqr4yvtL+/6d9TKa66VfxNl23EUC0xk+Xo6m6J2fQ5dpgrzsVxfN92+H5THtyj
ht
5cAv6JYMKQxf/WHu5xzYuW1eFn5WnyA4v3uF+Wx47qcsw+LpiO8pXzt
N87X233P/jLuf8uNw/u3z/OQeYAjxDEag3ex9em2KmoMZ78d/L53MhxWDABE4d6L8XH+3/MIOstpGZlwM7UWQngmLarP2A6RSLY/Q26ONIilrgZygycrtRBLJ7UwQxXZ0CfI9i3tD9Kb4WXJsiCNkrM6vTKH2aRZPwv4JioN5oiizfzpl5DX2QmV8HDqAIjjYGXkfxtfptwEmVdvPLPv2AYnDPYcA2FItBHAR09OV+qk9mfo/iNXIDxcC6Q4BbKV5f9/fxMq285lr6N5GZMyheW5+lyDwfUd7jRopg6cTWnrGWhywG9+5CkeV/nOL1dDSwJUWd+vspPoBVz/kWxXvHjWX7QyiC3r1YNBjw2S7nXAfsSxGobkLx+uig+BbsumbnUKzaeRLFB8FXULyeLgV2p5sZXbIoPdsX+BBFdnyXsq87UnwQ+Bjw9R5/KVINItOByZIkDXZlmcW/KT5Mr5+LTxvY03k/BN4DHJOZv+3HLkrLjRlkSZIGkYjYrBxfUd03EvgqsC3wt67BcUSsHhGTmlzrjcA7Kb5lu7Cfuiwtd07zJknS4PJ64HMRcRPFwM5VKUpx1qMo
lAk3O2BK6LiH9TlDpAkWneiqKW+T1ZDPaU2oIlFpIkDSIRsQfwEYr647UokmVPUAzs+3+ZucSsOuWMJ5+hWJxmfYqZV6YC11LMt35d13OklZkBsiRJklRhDbIkSZJUYYAsSZIkVRggS5IkSRUGyJIkSVKFAbIkSZJUYYAsSZIkVRggS5IkSRUGyJJWaBGRXR6dETEtIq6KiHdGRAxw/44v+3Vyl/1nlPtfNiAdW0oRcXnZ70l9bN/0+S/lvR+OiH6fnH9l
uRtPwYIEtaWZxZPn4F3AnsB/wEOGsgO9Wf6gw+JUl9N2ygOyBJfZGZx1d/joiDgD8Dx0TErzLzwgHpWPc+CXwZeHSgOyJJao0ZZEkrpcy8BPhF+eNrB7ArTWXm5My8OzNnD3RfJEmtMUCWtDK7udxu1NhRliQ8HBEjIuIzEXF3RMyLiPM
cZExCcj4uaImFk+/hERb+vuRhGxX0RcGhEzyhrov0bEXj2077bONSLGRsQnIuLGiHghImaV/fxeRGxZtrkcOL085bNd6rCP73K9bcr7PVY+16ci4jcRsV03fRsaER8t7zm3PO9bEbFqd8+nVRGxXkR8PCKuiIgnImJ+REyJiN9FxB69nBsRcWJE3Fn274mI+HZETOih
ERcVlEPF+ec1dEnBwRY+p6TpIGD0ssJK3MxpXbeV32DwHOB14KXAH8G3gWICLWBi4BdgSmlMcD2Bc4IyJ2z8wPVi8WEYcBv6d4z7weeBDYCbgSOKOVDkfEeuX9twOeBy4v+78p8F7gPuBe4KLyfvsBtwK3VC5zf+V6rwV+A4ws2/yD4gPDG4DDI+LQzLyySzd+CRwDzAYuBhYAbyvv1dHK8+nBkcBXgHsofv8vAFsARwGHRcRhmXlxN+d+B3g3xe/mNuAA4IPAARGxf2a+0GgYEUPK53MsMBO4keL3ujvwWeDQiHhZZs6p6XlJGgQMkCWtlMrZKw4rf/x3l8MbUQSdW2XmE12OnU4RHH8L+ERmziuvtw5wIfCBiPhTZl5U7h8HnEbxfvmOzDy9cv
B3yixa7/giI4Phs4ITNnVp7TJGBVgMz8ckRMoQhaz8/Mk5v8DiZRBIcdwGGZeWnl2KuAPwK/jIjNM3N+uf+NFMHxo8ABmflwuX9t4G/Abi0+n+5cA2yfmXd06fMhZb++HxFbZGazWSveAuyTmTeV56wC/AF4OfB54MOVtidRBMeXA8dm5pTynBHA94ETKALl/67peUkaBCyxkLRSKcsDtqAIWvehCIRPb9L0k12D44jYGXg1cAPwkUZwDJCZT1FkLQHeVzntdcBawJWN4Lhsn8Cngcdb6PuewCuAp4F3VoPj8poPZ2bXYL8nHwbGUjzXS6sHygD/BxQfFl5TOfSf5fbkRnBctn8a+FgL9+5RZt7WNTgu9/8VOAfYDNi+m9O/2wiOy3NmUmSQEzghIkYBRMQw4OPALOCYRnBcnjO/PGcK8O4y0yxJfeIbhqSVQqP+lqIc4F7geGAGRdbwgS7NE7igyWUOLrfnZ2Zn14OZeTPF1/R7VnbvX25/06R9B3BuC0/jleX215k5o4XzutN4P
5vhV5XZPgIgYDuxd7vtt18ZlUP18Df2ivN/IiDgyIr4YET8u66TPAHYom2zRzanNftd3UpSarALsUu7eFVgTuLb8gNP1nDnATcBqPdxLkpZgiYWklcWZ5baTop71NuB3mdksoHu6mh2umFRuvxgRX+zhXqMqf16/3D7STduHe7hOV43BhF0D+qU1qdw+ET2vl7JmuV0DGAE808PsGo9QBJTLJCJ2oCilmNRDs3Hd7O/pd70zi/5OGtc+KHpfYGRNinpoSeqVAbKklULXeZB7Mbe
Y1vza6mviB1IDWez5k9toJ/9ndHqsr67LMpAtgflo8HgZmZmRHxJYp5opd1FcTG87+foua5J88u470kDSIGyJIGk0a98PmZ+Y0+njO53E7s5nh3+5t5rNxu1sI5PXm8vNZJmdmXAPBZYD6wVkSM7mZmh41r6NfW5ePGzHxfk+Ob9nL+RIpvCJrtB3iy3Db+Pu9u8QOUJPXIGmRJg8kl5faoFs5p1PG+oeuBcpDYf7RwrcZAumPLmRl6M7/cdpfMaOn5lDXTjWxys+dzMLB6X67Vi0aJxhIDGCNiNeCgXs5v1retKcorZrJoyrsbgOkU07/V0W9JAgyQJQ0imflPiqByv3JRjiUWxoiIncop0hrOoci8viwqC4mUZQSfo4WMa2ZeD/wdWBv4cUSM7XLvSWXtbkMjU7pVN5f8BjAH+HpEHN3kuYyMiNdFxIaV3T8ot5+LiI0
dcEvtbX59KL+ylqxV9ezjjSuMcoinKL3oLZD0ZEYyAe5WIf36EoyTi9kfku68y/SlHL/LuIWCIzHREbRMRblvH5SBpkLLGQNNi8mWIRjv8EjouIWygC0fEU8yNvRDFH8kUAmTkjIk4AzqNYSOR9LFooZAvgJ8C7Wrj/WyjmGz4WOCQirqaYqm4zigzpSSwqL/gHxZRwr4tiZb0HKQLP0zLz2sy8PyKOBc4CzouI+4G7KKY924BiloexFLM+PF4+n19HxFHA64E7I+JvFDODvLy8/j9YNNPFUsnMpyPiZxS/l1sj4jKKQH5/YCjF4irH93CJXwL/LM+bTrHgy7rAHRRT61V9maKc4y3AXRFxM/AQxWDErYBtKebJ/gWS1EdmkCUNKuV8v/sCHwLupAgeX0cRHD9IMRfw17uc8wfgQIrs7/YU8wpPpljh7doW7/8EsAfwGYqg9SDgUGAMxcIWF1bazi3vdQlF8Hw8xcIXW3bp247luVle7zUUWeoLKMoV7uzSjeMoFjh5AngVRUB8FkWQ3Gz2j6XxPopg/yGKuZ/3pygx2Z3uZ6lo+BDFIL6JFCvyJfA9YP/MnF5tmJmdmfnWst0lwCYUZS8voRis+TXgHfU8JUmDRTRfxEiSJEkanMwgS5IkSRUGyJIkSVKFAbIkSZJUYYAsSZIkVRggS5IkSRUGyJIkSVKFAbIkSZJUYYAsSZIkVRggS5IkSRUGyJIkSVKFAbIkSZJUYYAsSZIkVRggS5IkSRUGyJIkSVKFAbIkSZJUYYAsSZIkVRggS5IkSRX/H5Bcd2r5UFGUAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(1,1, dpi=150)\n",
"plot_confusion_matrix(clf, X_mean, y_mean, display_labels=[\"classical\", \"disco\", \"reggae\"], ax=ax)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Std and Mean:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"X_mean_and_std = np.concatenate((classical_mean_and_std,disco_mean_and_std,reggae_mean_and_std),axis=0)\n",
"X_mean_and_std = X_mean_and_std.reshape(300,40)\n",
"y_mean_and_std = np.concatenate((np.a
ay([0]*100),np.a
ay([1]*100),np.a
ay([2]*100)),axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(300, 40)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_mean_and_std.shape"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stde
",
"output_type": "stream",
"text": [
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n"
]
}
],
"source": [
"clf = LinearSVC()\n",
"y_pred = clf.fit(X_mean_and_std, y_mean_and_std).predict(X_mean_and_std)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stde
",
"output_type": "stream",
"text": [
"d:\\anaconda3\\envs\\li
osa\\lib\\site-packages\\sklearn\\svm\\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n",
" \"the number of iterations.\", ConvergenceWarning)\n",
...