Solution
Robert answered on
Dec 21 2021
1. The regression model is given by
iii
yx
abe
=-+
where
2
(0,)
i
N
es
:
The likelihood function is given by
2
2
2
2
()
1
(,,)exp
2
2
ii
yx
L
a
abs
s
ps
æö
--
÷
ç
÷
=-
ç
÷
ç
÷
ç
èø
Õ
Then, the log-likelihood function is given by
2222
2
1
(,,)log(,,)log(2)log()
222
ii
i
nn
lLyx
absabspsa
s
==----
å
The first order conditions are given by
2
2
1
(,,)()
ii
lyx
absa
as
¶
=--
¶
å
2
(,,)0()0
ii
lyx
absa
a
¶
=Þ--=
¶
å
=>
ii
ynx
a
=+
åå
(1)
2
2
1
(,,)()
iii
lyxx
absa
s
¶
=--
¶
å
2
(,,)0()0
iii
lyxx
absa
¶
=Þ--=
¶
å
(2)
22
224
1
(,,)()
22
ii
i
n
lyx
absa
sss
¶
=-+--
¶
å
22
224
11
(,,)0()0
22
ii
i
lyx
absa
sss
¶
=Þ-+--=
¶
å
2.
Putting the value of
a
from (1) in (2) we get
2
(
)
iiiiii
yxynxnxx
=-+
ååååå
=>
22
(())
iiiiii
nyxyxnxx
-=-
ååååå
=>
22
()
iii
yxnyxxnx
-=-
åå
where
1
i
xx
N
=
å
,
1
i
yy
N
=
å
=>
2
()()()
iii
yyxxxx
--=-
åå
=>
2
()()
ˆ
()
ii
i
yyxx
xx
--
=
-
å
å
Putting the value of
ˆ
in (1) we get
ˆ
ˆ
yx
a
=-
Again,
22
224
11
(,,)0()0
22
ii
i
lyx
absa
sss
¶
=Þ-+--=
¶
å
22
1
ˆ
ˆˆ
()
ii
i
yx
N
sa
Þ=--
å
3.
The second-order conditions are
2
22
(,,)
N
l
abs
as
¶
=-
¶
2
22
(,,)
i
x
Nx
l
abs
abss
¶
=-=-
¶¶
å
...