Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

Assignment-Business Finance XXXXXXXXXXpdf Business Finance 6392 S1, 2018 Major Group Assignment Due date: by 23.55 pm on Thursday, 20th April, 2018. Submission: Each group will submit one hard copy...

1 answer below »
Assignment-Business Finance XXXXXXXXXXpdf
Business Finance 6392
S1, 2018
Major Group Assignment
Due date: by 23.55 pm on Thursday, 20th April, 2018.
Submission: Each group will submit one hard copy and one soft copy as advised in the Unit Outline

You want to form a portfolio of investment consisting of shares listed in the Australian Stock
Exchange (ASX). Select 7 shares from the ASX listed securities/ companies. You can collect
the data of your own from any data sources such as ASX website, yahoo finance etc. Use
monthly share price data from January 2001 to December 2017. To perform the analysis:
1. Collect information on the shortest maturity Treasury Notes (Treasury security) rate
in Australia as a proxy for risk-free rate.
2. Calculate the monthly returns of each share and of the market index using the share
price indices and market price index (All Ordinaries Index).
3. Calculate the expected (average) return of each of the shares and of the market
using the returns calculated in (2).
4. Calculate the beta for each of the 7 shares, running a regression of a share’s returns
(Ri) on the market return (Rm). It is the same as calculating the SLOPE in Excel.
5. Calculate the fair (risk consistent) return for each share applying the capital asset
pricing model (CAPM) and using the information you have gathered.
6. From the information you gathered, draw the security market line of the market
(ASX).
7. Plot the shares, you analysed, on the graph of the security market line drawn in (6)
above.
8. From your plot in (6 &7) above, identify the shares you will select to be included in
your portfolio. Explain your rationale for the selection and rejection of shares.
[Note: you need to have minimum two shares in your portfolio. If you do not find
two suitable shares in the 7 shares which you have analysed, analyse some more
shares until you get at least two suitable shares for investment. However, if you find
more than two suitable shares in the five shares you have analysed, include all the
suitable shares in the proposed portfolio]
9. Calculate the expected return and beta of your portfolio considering equal
investment in each share. Plot the portfolio (risk and return) on the graph of the
security market line drawn in (6) above. Comment on the portfolio risk and return.
10. Why should you consider your conclusion in part (8) above to be less than certain?

NB: Students are required to use more than ten (10) recently published (published in
2018 or before, starting from 2018 to backward) journal articles published on or
elated to risk (beta) and return relationship as references, not websites addresses.
Answered Same Day Apr 21, 2020

Solution

Aarti J answered on Apr 23 2020
134 Votes
Beta - Wes
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.5321713353
    R Square    0.2832063301
    Adjusted R Square    0.2796578466
    Standard E
or    0.0531881943
    Observations    204
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    0.2257826971    0.2257826971    79.8105243855    2.58376814498486E-16
    Residual    202    0.5714547695    0.002828984
    Total    203    0.7972374667
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    0.0030847143    0.0037440263    0.8239029413    0.4109664278    -0.0042976721    0.0104671007    -0.0042976721    0.0104671007
    X Variable 1    0.8970585772    0.10041318    8.9336736221    2.58376814498486E-16    0.6990661398    1.0950510146    0.6990661398    1.0950510146
Beta - wools W
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.3754079283
    R Square    0.1409311126
    Adjusted R Square    0.1366782964
    Standard E
or    0.0448372898
    Observations    204
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    0.0666206657    0.0666206657    33.1383026124    0.0000000315
    Residual    202    0.4060972772    0.0020103826
    Total    203    0.4727179429
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    0.0053901228    0.003156189    1.7077947084    0.0892107491    -0.0008331792    0.0116134249    -0.0008331792    0.0116134249
    X Variable 1    0.4872815395    0.084647635    5.7565877577    0.0000000315    0.3203752471    0.6541878319    0.3203752471    0.6541878319
Beta - Rio tinto
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.5670243618
    R Square    0.3215166269
    Adjusted R Square    0.3181577983
    Standard E
or    0.0698954169
    Observations    204
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    0.4676414471    0.4676414471    95.7228448008    9.46677948514922E-19
    Residual    202    0.9868445981    0.0048853693
    Total    203    1.4544860452
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    0.0083643712    0.004920082    1.7000470996    0.0906612153    -0.0013369353    0.0180656777    -0.0013369353    0.0180656777
    X Variable 1    1.2910170342    0.1319544905    9.7838052311    9.46677948514956E-19    1.0308321541    1.5512019143    1.0308321541    1.5512019143
Beta - harvey
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.5167301904
    R Square    0.2670100897
    Adjusted R Square    0.2633814268
    Standard E
or    0.073841619
    Observations    204
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    0.4012208238    0.4012208238    73.5836023903    0
    Residual    202    1.1014221074    0.0054525847
    Total    203    1.5026429313
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    -0.0004670104    0.0051978633    -0.0898466147    0.9284981268    -0.0107160397    0.0097820189    -0.0107160397    0.0097820189
    X Variable 1    1.1958238402    0.1394044652    8.5780885045    0    0.9209492685    1.470698412    0.9209492685    1.470698412
Beta - common
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.6345013983
    R Square    0.4025920244
    Adjusted R Square    0.3996345592
    Standard E
or    0.0429854167
    Observations    204
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    0.2515288489    0.2515288489    136.1273907358    2.22107258772246E-24
    Residual    202    0.3732447027    0.0018477461
    Total    203    0.6247735516
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    0.0023623065    0.0030258318    0.7807131003    0.4358851903    -0.0036039602    0.0083285733    -0.0036039602    0.0083285733
    X Variable 1    0.9468242584    0.0811515121    11.667364344    2.22107258772238E-24    0.7868115422    1.1068369746    0.7868115422    1.1068369746
Beta -BHP
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.6121908613
    R Square    0.3747776507
    Adjusted R Square    0.3716824905
    Standard E
or    0.0565481128
    Observations    204
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    0.3871923705    0.3871923705    121.0850596062    2.27950994425712E-22
    Residual    202    0.6459331903    0.0031976891
    Total    203    1.0331255608
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    0.0042273627    0.0039805379    1.0620079212    0.2895001198    -0.0036213718    0.0120760973    -0.0036213718    0.0120760973
    X Variable 1    1.1747321922    0.1067563189    11.0038656665    2.27950994425695E-22    0.9642324969    1.3852318874    0.9642324969    1.3852318874
Beta - telstra
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.2353296868
    R Square    0.0553800615
    Adjusted R Square    0.0507037252
    Standard E
or    0.0505976358
    Observations    204
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    0.0303185302    0.0303185302    11.8426172963    0.0007034337
    Residual    202    0.5171443907    0.0025601207
    Total    203    0.5474629209
        Coefficients    Standard E
or    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    -0.002276616    0.0035616716    -0.6391987488    0.5234178157    -0.0092994395    0.0047462074    -0.0092994395    0.0047462074
    X Variable 1    0.3287225874    0.0955225042    3.4413104039    0.0007034337    0.140373474    0.5170717008    0.140373474    0.5170717008
Data
    1    Australia 2 year yield
        =    2.12%
    2    Date    Wesfarmers    Return    Woolsworth    Return    Rio tinto    Return    Harvey Norman    Return    Common wealth bank    Return    BHP billiton    Return    Telstra    Return    All...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here