Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

1. Write an M file spline.m such that spline(m(k),m(k+1),p(k), q(k),x0(k), x0(k+1) , x ) computesSk(x) for x in the interval [x0(k) ,x0(k+1)]2. Write a matlab program in an M filespline_nat.mthat...

1 answer below »

1. Write an M file spline.m such that spline(m(k),m(k+1),p(k), q(k),x0(k), x0(k+1) , x ) computesSk(x) for x in the interval [x0(k) ,x0(k+1)]2. Write a matlab program in an M filespline_nat.mthat computes thenatural spline approximation of the set of data points (x0(k) , y0(k) ),k=0,1,..n. asspline_nat(x0,y0)that(a) Accepts x0 and y0 data points.(b) defines a(i), i=1,2,..,n, b(i), i=1,2,..n-1, c(i),i=1,2,..n-1 and theright hand side u(k), k=0,1,2,..n-2.(c) calls gesolve from question I to solve the resulting system. Com-pute p(i), i=0,...,n-1, and q(i), i=0,..,n-1.(d) calls spline.m to evaluateSk(x) and plot the spline approximation.On the same plot show the data points x0 and y0 asplot(x0,y0,’*’).3. Test your program on an example treated in class to make sure that itis working properly. x = [ -2,-1,0,1,2], y = [ 2,1,0,1,2], m =[ 0 , -6/7 ,24/7, -6/7, 0], p = [ 2,8/7, -4/7, 8/7], q =[ 8/7, -4/7 , 8/7, 2 ].4. Run the matlab smile.m program that reads each of the attached datafiles and callsspline_natseveral times to plot its natural spline ap-proximation. Plot the spline approximation of all data files on the samefigure to have a smiling face. Data files and the m-file ’smile.m’ will beposted in Canvas under Files.Problem III1. Write an M file dspline.m such that dspline(m(k),m(k+1),p(k), q(k),x0(k), x0(k+1) , x ) computes derivative ofSk(x) for x in the interval[x0(k) , x0(k+1)].22. Modify yourspline_nat.mtospline_clam.msuch thatspline_clam(x0,y0,fp0,fp1,func,funcprime)(a) accepts x0, y0 and the first derivatives of S(x), S’(x0(0)) = fp0,and S’(x0(n)) = fp1. func is the function to be interpolated,funcprime is the derivative of func.(b) defines a ,b,c and f for clamped spline and use gesolve to solve form(i), i=1,2,...,n-1. Compute m(0) and m(n).(c) Computes p and q(d) calls spline.m to plot the clamped spline and the exact functionon the same figure.(e) calls dspline.m to plot the derivative S’(x) and the derivative onthe function.(f) plots the true error, e(x) = S(x) - f(x), as a function of x. On aseparate figure plot the error interval by interval to include thepointsx0(i), e(x0(i)) in your plot and mark them by a *.3. Test your program using a cubic functionf(x) =x3with x0 =[ XXXXXXXXXX]. You should find S(x) = f(x) and the error should be zero toround-off error.4. Run you program to approximatef(x) =x∗exp(x) withx0i=i∗0.2,i =0,1,2,..10.a-Hand in a printed copy of you programs, your plots and results withdiscussions.b-Upload your programs to CanvasLet the system Ax = f have n equations and n unknowns with nonzero entriesA(i,i) = a(i) , i=1,2,...,nA(i+1,i) = b(i), i=1,2,...n-1A(i,i+1) = c(i), i=1,2,..,n-1All other entries of the matrix A are zero.The following algorithm solves the system Ax = f using Gaussian eliminationfor tridiagonal systems.
Answered Same Day Apr 06, 2021

Solution

Abr Writing answered on Apr 09 2021
141 Votes
math4446/dspline.m
function Skp = dspline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1-xk;
Skp = -mk./(2.*hk).*(x-xkp1).^2 + ...
mkp1./(2.*hk).*(x-xk).^2 - pk + qk;
end
math4446/gesolve.m
function x = gesolve(a,b,c,f)
d(1) = a(1);
z(1) = f(1);
n = length(f);
for i=2:n
d(i) = a(i) - b(i-1)*c(i-1)/d(i-1);
z(i) = f(i) - b(i-1)*z(i-1)/d(i-1);
end
%
%solve Ux =z or Backward substitution step
%
x(n) = z(n)/d(n);
for i=n-1:-1:1
x(i) = (z(i) - c(i)*x(i+1))/d(i);
end
x = x';
end
math4446/headbot.m
headb=[
-1,0
-0.95,-0.31225
-0.9,-0.43589
-0.85,-0.52678
-0.8,-0.6
-0.75,-0.66144
-0.7,-0.71414
-0.65,-0.75993
-0.6,-0.8
-0.55,-0.83516
-0.5,-0.86603
-0.45,-0.89303
-0.4,-0.91652
-0.35,-0.93675
-0.3,-0.95394
-0.25,-0.96825
-0.2,-0.9798
-0.15,-0.98869
-0.1,-0.99499
-0.05,-0.99875
0,-1
0.05,-0.99875
0.1,-0.99499
0.15,-0.98869
0.2,-0.9798
0.25,-0.96825
0.3,-0.95394
0.35,-0.93675
0.4,-0.91652
0.45,-0.89303
0.5,-0.86603
0.55,-0.83516
0.6,-0.8
0.65,-0.75993
0.7,-0.71414
0.75,-0.66144
0.8,-0.6
0.85,-0.52678
0.9,-0.43589
0.95,-0.31225
1,0 ];
math4446/headtop.m
headt=[
-1,0
-0.95,0.31225
-0.9,0.43589
-0.85,0.52678
-0.8,0.6
-0.75,0.66144
-0.7,0.71414
-0.65,0.75993
-0.6,0.8
-0.55,0.83516
-0.5,0.86603
-0.45,0.89303
-0.4,0.91652
-0.35,0.93675
-0.3,0.95394
-0.25,0.96825
-0.2,0.9798
-0.15,0.98869
-0.1,0.99499
-0.05,0.99875
0,1
0.05,0.99875
0.1,0.99499
0.15,0.98869
0.2,0.9798
0.25,0.96825
0.3,0.95394
0.35,0.93675
0.4,0.91652
0.45,0.89303
0.5,0.86603
0.55,0.83516
0.6,0.8
0.65,0.75993
0.7,0.71414
0.75,0.66144
0.8,0.6
0.85,0.52678
0.9,0.43589
0.95,0.31225
1,0];
math4446/leyebot.m
leyeb=[
-0.7,0.5
-0.69,0.46878
-0.68,0.45641
-0.67,0.44732
-0.66,0.44
-0.65,0.43386
-0.64,0.42859
-0.63,0.42401
-0.62,0.42
-0.61,0.41648
-0.6,0.4134
-0.59,0.4107
-0.58,0.40835
-0.57,0.40633
-0.56,0.40461
-0.55,0.40318
-0.54,0.40202
-0.53,0.40113
-0.52,0.4005
-0.51,0.40013
-0.5,0.4
-0.49,0.40013
-0.48,0.4005
-0.47,0.40113
-0.46,0.40202
-0.45,0.40318
-0.44,0.40461
-0.43,0.40633
-0.42,0.40835
-0.41,0.4107
-0.4,0.4134
-0.39,0.41648
-0.38,0.42
-0.37,0.42401
-0.36,0.42859
-0.35,0.43386
-0.34,0.44
-0.33,0.44732
-0.32,0.45641
-0.31,0.46878
-0.3,0.5];
math4446/leyetop.m
leyet=[
-0.7,0.5
-0.69,0.53122
-0.68,0.54359
-0.67,0.55268
-0.66,0.56
-0.65,0.56614
-0.64,0.57141
-0.63,0.57599
-0.62,0.58
-0.61,0.58352
-0.6,0.5866
-0.59,0.5893
-0.58,0.59165
-0.57,0.59367
-0.56,0.59539
-0.55,0.59682
-0.54,0.59798
-0.53,0.59887
-0.52,0.5995
-0.51,0.59987
-0.5,0.6
-0.49,0.59987
-0.48,0.5995
-0.47,0.59887
-0.46,0.59798
-0.45,0.59682
-0.44,0.59539
-0.43,0.59367
-0.42,0.59165
-0.41,0.5893
-0.4,0.5866
-0.39,0.58352
-0.38,0.58
-0.37,0.57599
-0.36,0.57141
-0.35,0.56614
-0.34,0.56
-0.33,0.55268
-0.32,0.54359
-0.31,0.53122
-0.3,0.5 ];
math4446/mouth.m
mouthd=[
-0.5,-0.2
-0.475,-0.27806
-0.45,-0.30897
-0.425,-0.3317
-0.4,-0.35
-0.375,-0.36536
-0.35,-0.37854
-0.325,-0.38998
-0.3,-0.4
-0.275,-0.40879
-0.25,-0.41651
-0.225,-0.42326
-0.2,-0.42913
-0.175,-0.43419
-0.15,-0.43848
-0.125,-0.44206
-0.1,-0.44495
-0.075,-0.44717
-0.05,-0.44875
-0.025,-0.44969
0,-0.45
0.025,-0.44969
0.05,-0.44875
0.075,-0.44717
0.1,-0.44495
0.125,-0.44206
0.15,-0.43848
0.175,-0.43419
0.2,-0.42913
0.225,-0.42326
0.25,-0.41651
0.275,-0.40879
0.3,-0.4
0.325,-0.38998
0.35,-0.37854
0.375,-0.36536
0.4,-0.35
0.425,-0.3317
0.45,-0.30897
0.475,-0.27806
0.5,-0.2];
math4446/nose.m
nosed=[
-0.2,0.44
-0.19,0.3776
-0.18,0.3184
-0.17,0.2624
-0.16,0.2096
-0.15,0.16
-0.14,0.1136
-0.13,0.0704
-0.12,0.0304
-0.11,-0.0064
-0.1,-0.04
-0.09,-0.0704
-0.08,-0.0976
-0.07,-0.1216
-0.06,-0.1424
-0.05,-0.16
-0.04,-0.1744
-0.03,-0.1856
-0.02,-0.1936
-0.01,-0.1984
0,-0.2
0.01,-0.1984
0.02,-0.1936
0.03,-0.1856
0.04,-0.1744
0.05,-0.16
0.06,-0.1424
0.07,-0.1216
0.08,-0.0976
0.09,-0.0704
0.1,-0.04
0.11,-0.0064
0.12,0.0304
0.13,0.0704
0.14,0.1136
0.15,0.16
0.16,0.2096
0.17,0.2624
0.18,0.3184
0.19,0.3776
0.2,0.44];
math4446/project2.docx
Matt 4446 Project 2
Clearing the workspace
clear;
close;
clc;
Seleting the format for results
format long e
Problem I
Testing the program
% Defining the given parameters
A = [
5 2 0 0
4 13 -4 0
0 7 15 6
0 0 12 -16
];
f = [
1
2
3
4
];
Getting the solution using MATLAB command
x = A\f
Now getting the solution using the Gaussian elimination and forward algorithm defined under gesolve
n = length(f);
a = zeros(n, 1);
= zeros(n-1, 1);
c = zeros(n-1, 1);
for i=1:n
a(i) = A(i, i);
if i ~= n
b(i) = A(i+1, i);
c(i) = A(i, i+1);
end
end
x = gesolve(a, b, c, f)
From the results above, we can see that the results are exactly the same from the algorithm to the results from MATLAB command.
Problem II
Testing the program
% Defining the given variables
x = [ -2,-1,0,1,2];
y = [ 2,1,0,1,2];
m =[ 0 , -6/7 , 24/7, -6/7, 0];
p = [ 2,8/7, -4/7, 8/7];
q =[ 8/7, -4/7 , 8/7, 2 ];
figure;
spline_nat(x, y)
Running the MATLAB smile program to plot the natural spline approximation of the smiling face.
figure;
smile
Problem III
Testing the code for a cubic function
x0 = [-1 2 5 8];
n = length(x0);
func = @(x) x.^3;
funcprime = @(x) 3*(x.^2);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime)
From the plot above, as expected we can see that the e
or is almost equal to zero.
Now testing the code for
i = 0:10;
x0 = i*0.2;
n = length(x0);
func = @(x) x.*exp(x);
funcprime = @(x) exp(x) + x.*exp(x);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime)
Yes, the average e
or tends to be about zero, which is very small, but the round-off e
or is not exactly equal to 0. This is still quite a good approximation, although it is not as reliable as in the cubic function.
Appendix
function x = gesolve(a,b,c,f)
d(1) = a(1);
z(1) = f(1);
n = length(f);
for i=2:n
d(i) = a(i) - b(i-1)*c(i-1)/d(i-1);
z(i) = f(i) - b(i-1)*z(i-1)/d(i-1);
end
%
%solve Ux =z or Backward substitution step
%
x(n) = z(n)/d(n);
for i=n-1:-1:1
x(i) = (z(i) - c(i)*x(i+1))/d(i);
end
x = x';
end
function Sk = spline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1 - xk;
Sk = - mk./(6.*hk).*(x - xkp1).^3 + ...
mkp1./(6.*hk).*(x - xk).^3 + ...
pk.*(xkp1 - x) + ...
qk.*(x - xk);
end
function spline_nat(x0,y0)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
b = h(2:(n-2));
u = 6*(d(2:n-1) - d(1:n-2));
m = gesolve(a,b,b,u);
m = [0 m' 0];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;
hold on
plot(x0, y0, '*');
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),1000);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
plot(x,Sk,'linewidth',1.5);
end
xlabel('x');
ylabel('f(x)');
title('Natural spline for f(x)');
end
function Skp = dspline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1-xk;
Skp = -mk./(2.*hk).*(x-xkp1).^2 + ...
mkp1./(2.*hk).*(x-xk).^2 - pk + qk;
end
function spline_clam(x0,y0,fp0,fp1,func,funcprime)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
a(1) = 3*h(1)/2 + 2*h(2);
a(n-2) = 3/2*h(n-1) + 2*h(n-2);
b = h(2:(n-2));
f=6*(d(2:n-1) - d(1:n-2));
f(1) = f(1) - 3*(d(1) - fp0);
f(n-2) = f(n-2) - 3*(fp1 - d(end));
m = gesolve(a,b,b,f);
m0 = 3*(d(1) - fp0)/h(1) - m(1)/2;
mn = 3*(fp1 - d(end))/h(end) - m(end)/2;
m =[m0 m' mn];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;
figure(1);
clf
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
plot(x,Sk,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('Clamped cubic spline and f(x)')
pause
figure(2);
clf
clear F
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Skp = dspline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = funcprime(x);
plot(x,Skp,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('g(x)')
title('Derivative of clamped cubic spline, g(x)')
pause;
figure(3);
clf;
clear F;
hold on;
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
e = Sk - F;
plot(x,e,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('E
or of the clamped cubic spline for f(x)')
end
math4446/project2.mlx
[Content_Types].xml

_rels/.rels

mathml/eqn1.mml
math xmlns="http:
www.w3.org/1998/Math/MathML" display="inline"
mrow
mi mathvariant="italic">A
mi
mo>\
mo
mi mathvariant="italic">f
mi
mrow
math
mathml/eqn2.mml
math xmlns="http:
www.w3.org/1998/Math/MathML" display="inline"
mrow
mi mathvariant="italic">f
mi
mrow
mo>(
mo
mrow
mi mathvariant="italic">x
mi
mrow
mo>)
mo
mrow
mo>=
mo
mi mathvariant="italic">x
mi
mo>×
mo
mi mathvariant="normal">exp
mi
mrow
mo>(
mo
mrow
mi mathvariant="italic">x
mi
mrow
mo>)
mo
mrow
mrow
math
matla
_rels/document.xml.rels

matla
document.xml
Matt 4446 Project 2 Clearing the workspace clear;
close;
clc; Seleting the format for results format long e Problem I Testing the program % Defining the given parameters
A = [
5 2 0 0
4 13 -4 0
0 7 15 6
0 0 12 -16
];
f = [
1
2
3
4
]; Getting the solution using MATLAB command A\backslash f x = A\f Now getting the solution using the Gaussian elimination and forward algorithm defined under gesolve n = length(f);
a = zeros(n, 1);
= zeros(n-1, 1);
c = zeros(n-1, 1);
for i=1:n
a(i) = A(i, i);
if i ~= n
b(i) = A(i+1, i);
c(i) = A(i, i+1);
end
end
x = gesolve(a, b, c, f) From the results above, we can see that the results are exactly the same from the algorithm to the results from MATLAB command. Problem II Testing the program % Defining the given variables
x = [ -2,-1,0,1,2];
y = [ 2,1,0,1,2];
m =[ 0 , -6/7 , 24/7, -6/7, 0];
p = [ 2,8/7, -4/7, 8/7];
q =[ 8/7, -4/7 , 8/7, 2 ];
figure;
spline_nat(x, y) Running the MATLAB smile program to plot the natural spline approximation of the smiling face. figure;
smile Problem III Testing the code for a cubic function x0 = [-1 2 5 8];
n = length(x0);
func = @(x) x.^3;
funcprime = @(x) 3*(x.^2);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime) From the plot above, as expected we can see that the e
or is almost equal to zero. Now testing the code for f\left(x\right)=x\times \mathrm{exp}\left(x\right) i = 0:10;
x0 = i*0.2;
n = length(x0);
func = @(x) x.*exp(x);
funcprime = @(x) exp(x) + x.*exp(x);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime) Yes, the average e
or tends to be about zero, which is very small, but the round-off e
or is not exactly equal to 0. This is still quite a good approximation, although it is not as reliable as in the cubic function. Appendix function x = gesolve(a,b,c,f)
d(1) = a(1);
z(1) = f(1);
n = length(f);
for i=2:n
d(i) = a(i) - b(i-1)*c(i-1)/d(i-1);
z(i) = f(i) - b(i-1)*z(i-1)/d(i-1);
end
%
%solve Ux =z or Backward substitution step
%
x(n) = z(n)/d(n);
for i=n-1:-1:1
x(i) = (z(i) - c(i)*x(i+1))/d(i);
end
x = x';
end
function Sk = spline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1 - xk;
Sk = - mk./(6.*hk).*(x - xkp1).^3 + ...
mkp1./(6.*hk).*(x - xk).^3 + ...
pk.*(xkp1 - x) + ...
qk.*(x - xk);
end
function spline_nat(x0,y0)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
b = h(2:(n-2));
u = 6*(d(2:n-1) - d(1:n-2));
m = gesolve(a,b,b,u);
m = [0 m' 0];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;
hold on
plot(x0, y0, '*');
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),1000);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
plot(x,Sk,'linewidth',1.5);
end
xlabel('x');
ylabel('f(x)');
title('Natural spline for f(x)');
end
function Skp = dspline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1-xk;
Skp = -mk./(2.*hk).*(x-xkp1).^2 + ...
mkp1./(2.*hk).*(x-xk).^2 - pk + qk;
end
function spline_clam(x0,y0,fp0,fp1,func,funcprime)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
a(1) = 3*h(1)/2 + 2*h(2);
a(n-2) = 3/2*h(n-1) + 2*h(n-2);
b = h(2:(n-2));
f=6*(d(2:n-1) - d(1:n-2));
f(1) = f(1) - 3*(d(1) - fp0);
f(n-2) = f(n-2) - 3*(fp1 - d(end));
m = gesolve(a,b,b,f);
m0 = 3*(d(1) - fp0)/h(1) - m(1)/2;
mn = 3*(fp1 - d(end))/h(end) - m(end)/2;
m =[m0 m' mn];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;
figure(1);
clf
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
plot(x,Sk,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('Clamped cubic spline and f(x)')
pause
figure(2);
clf
clear F
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Skp = dspline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = funcprime(x);
plot(x,Skp,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('g(x)')
title('Derivative of clamped cubic spline, g(x)')
pause;
figure(3);
clf;
clear F;
hold on;
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
e = Sk - F;
plot(x,e,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('E
or of the clamped cubic spline for f(x)')
end
matla
output.xml
manual document ready 0.4 matrix x 4×1 4 1 double 1.338393927287255e-01
1.654015181781862e-01
1.713943268078306e-01
-1.214542548941270e-01
double double [[{"value":"{\"value\":\"1.338393927287255e-01\"}"},{"value":"{\"value\":\"1.654015181781862e-01\"}"},{"value":"{\"value\":\"1.713943268078306e-01\"}"},{"value":"{\"value\":\"-1.214542548941270e-01\"}"}]] 19 matrix x 4×1 4 1 double 1.338393927287255e-01
1.654015181781862e-01
1.713943268078306e-01
-1.214542548941270e-01
double double [[{"value":"{\"value\":\"1.338393927287255e-01\"}"},{"value":"{\"value\":\"1.654015181781862e-01\"}"},{"value":"{\"value\":\"1.713943268078306e-01\"}"},{"value":"{\"value\":\"-1.214542548941270e-01\"}"}]] 32 figure cba6917a-d32d-4f77-852e-b33351d568dd 
5cfRORY1hFRPMUwHk0K2trilEFOsjFzpc4ymJpS1FILWyp
+xeYvda7RalRXbJzPJUOtBaLDQbE/8UpDusmw3t1GLQseOfE51vlkfwKOf3+/j7fu6P67XCf8if9/NphEVEREREROQwAxERERERETnMQERERERERA4zEBERERERkcMMRERERERE5DADEREREREROcxAREREREREDjMQERERERGRwwxERERERETkMAMRERERERE5zEBEREREREQOMxAREREREZHDDEREREREROQwAxERERERETnMQERERERERA4zEBERERERkcMMRERERERE5DADEREREREROcxAREREREREDjMQERERERGRwwxERERERETkMAMRERERERE5zEBEREREREQOMxARkf+2adMmxo4dy9ixY7nxxhtpbW3laP7lX/6FsWPHMnbsWJqbmzkZGhsb6ayqqqoYO3YsY8eO5cknn6SzqKqqYuzYsYwdO5Ynn3wSS1VVFWPHjmXs2LE8+eSTdCZ79+5l1qxZnH322fTq1Yv+/ftz/fXXczrs3buXWbNmcfbZZ9OrVy/69+/P9ddfT1sZGRn06tWLJUuWcDwCgQB9+vThjDPOoL6+HhGRzs5ARET+m8/no6KigoqKCl555RXmz5/P0bz77rtUVFRQUVHBwYMHORH19fVMmDCBvLw8OqsdO3ZQUVFBRUUFH3zwAZ3Fjh07qKiooKKigg8++ADLjh07qKiooKKigg8++IDOZMaMGTz99NN8+eWXmL766iuam5s5HWbMmMHTTz/Nl19+iem
76iubkZi8vlYuPGjQwcOJDc3FyOh91u51e/+hX79u3j17/+NSIinZ2BiIh8o/nz51NfX8+pUltbywUXXMD
7+O9AyrVq3C8sgjj/Daa68xb948TodVq1ZheeSRR3jttdeYN28eptbWVh544AFMubm5GIbB8
pppswVVRUsGnTJkREOjMDERH5Ri0tLfz617/mVNm9ezehUAg5uaZNm0Y4HCYcDrN48WI6i4MHDxIKhTBFRkZyzz33MGHCBK644go62sGDBwmFQpgiIyO55557mDBhAldccQWmpUuX8umnn2LKycnhRAwfPpykpCRMv/vd7xAR6cwMRETkW1VUVFBeXs6xqKqq4u677+bGG2/kxhtv5L
mP58uUcOHAAy6ZNm1i3bh2WHTt24HK5qKysxPSPf/wDl8uFy+Vi8+bNtHXw4EFcLhcul4s
OEPtLV582ZcLhcul4vPPvuMd955h5tuuokZM2ZQU1ODpaqqirvvvps
7yRG2+8kdtuu43ly5dz4MABToYDBw6wfPly
vtNiZPnsy0adOYN28emzZt4kgfffQRLpcLl8uF1+vl66+/ZtGiRUybNo2
qJV199lWNRX1+Py+XC5XJRU1ODpb6+HpfLhcvlorGxEdPy5cvJzc1l2rRpPPbYYzQ1NXE0n332G
e+ZNm0a06ZN4/HHH8fr9dJeGzZswOVy0ZbL5cLlcrFz507a2rRpE7Nnz+bGG2/kpptuYtGiRfj9fo60efNmXC4XLpeLzz77jHfeeYe
qJGTNmUFNTwzfZsGEDLpeLtlwuFy6Xi507d2J69tlnMSUmJnLRRRdh+a
+i9cLhculwuXy0VzczNtuVwuXC4XLpeLrVu3YsnKysJUWVlJfX09IiKdlYGIiBxVVFQUlrvuuovm5ma+S2trKxMmTOCqq67i0Ucf5ZVXXuGVV17hueeeY8qUKVx00UXs3LkT06JFiygqKsLy/vvvk5OTw+9
3tMGzZsICcnh5ycHFwuF201NzeTk5NDTk4Os2bNoi2Xy0VOTg45OTksXLiQUaNGsWzZMp599lmee+45WltbmTBhAldddRWPPvoor7zyCq+88grPPfccU6ZM4aKLLmLnzp2ciMbGRpKSkpgyZQrPPfccK1as4KWXXuKhhx5i5MiRTJ48mbYqKyvJyckhJyeHVatWcfHFF5OXl8dLL73EsmXLmDhxIj/96U/5+uuvaY933nmHnJwccnJyeP7557G888475OTkkJOTw5/+9CeGDx/OlClTeOGFF3jppZf47W9/S3JyMvX19bT1hz/8gaSkJO69915eeuklXnrpJfLz8/n+97/P0qVLaY+FCxdyyy23YAmFQuTk5JCTk0NdXR2mnTt3csUVVzBy5EgWLlzIK6+8wrJly8jLy+O8885j6dKltOVyucjJySEnJ4eFCxcyatQoli1bxrPPPstzzz3HN1m4cCG33HILllAoRE5ODjk5OdTV1VFfX8+WLVswXXnllbQ1ePBg7
LnJycsjJyeHBBx/E8vDDD5OTk0NOTg6/+c1vGDx4MJbhw4djKSsrQ0SkszIQEZGjysrKYujQoZgaGhqYP38+3+XRRx/l9ddfxzRw4EAmTZrExIkTOeusszB9/PHHPPjgg3SUxx9/nFAohGXq1Kk8+uijvP7665gGDhzIpEmTmDhxImeddRamjz/+mAcffJATcfPNN9PQ0IApKyuLe+65h1tuuQW73Y5pxYoVLFq0iKO59957qa+vZ+TIkVx55ZVY1q1bx2233cbJcu+991JbW8u4ceO47
iIiIwLRnzx4KCwuxvPPOO0yaNIl9+/Zh+vnPf87EiROJioqipaWFW265hTfffJPv0rt3b6KiomgrKiqKqKgoIiIiCAaDZGRkUF1djSkiIoLLL7+cuLg4TPv27eOWW27hxRdf5Ggef/xxQqEQlqlTp/JNevfuTVRUFG1FRUURFRVFREQEmzZtwpKZmUlbQ4YM4bnnnsPy2GOP8V
9V98+OGHFBYWYnnxxRcZPHgwltGjR2OpqqpCRKSzMhARkaPq27cvTz31FJaHH36Ybdu28W327t3LD37wA6Kiovjb3/7G8uXLWblyJa+99hoWr9eLafny5VRUVGC59tprCYfD/PnPf+ZkOXToEMuWLaOlpYU1a9YwatQo9u7dyw9+8AOioqL429/+xvLly1m5ciWvvfYaFq/Xy/FqbW1l/fr1mEaMGEFpaSmPPPIIS5YsYe3atVx99dXccsstXHjhhRxNS0sLa9asYcOGDVRVVbF27VoiIiIwrVixgo8++oiTobm5mU2bNlFeXs6
77Kk08+ieWtt97Ccvfdd2N54YUXWL16NStXruSdd94hIiIC0wMPPMB3KS0tZe/evViioqJobm6mubmZUaNG8eijj/Lxxx9jGjp0KJ988gk1NTXs3LmToqIiLHfeeSdNTU0c6dChQyxbtoyWlhbWrFnDqFGj+CalpaXs3bsXS1RUFM3NzTQ3NzNq1CjWrVuHJTY2liNdf/31/OpXv8J06NAh
75ZqZMmUJLSwumu+66izFjxtBWnz59OPPMMzFt3LgREZHOykBERL7R2LFj+cUvfoHp0KFDzJgxg28zf/58tm7dSjAYJD4+HtPBgwf5/PPPsXg8HjrKyJEjmTZtGn369GHMmDGY5s+fz9atWwkGg8THx2M6ePAgn3/+ORaPx8PxMgyDyMhITG+
TZXXHEFDz/8MJs2bSI1NZU333yTJUuWMGrUKI7m5z
OWPGjMEyevRoxo8fj+Wtt97iZBg9ejRpaWlYfvnLX2LZt28fpkAgQHV1NaZ+/fpx0003YUlNTWX06NGYamtr8fv9nIhly5ZhKSkpISEhAcvcuXMZOXIkpq+++opVq1ZxpJEjRzJt2jT69OnDmDFjOBGBQADLZZddxtEsXLiQ73
+5jef/993nvvPUwpKSk88sgjHM2IESMw7d+/n+bmZkREOiMDERH5Vk8
TRnnnkmprfffhuXy8W3OXDgAGVlZeTm5jJ8+HD69u1LdnY2lubmZjrKsGHDOJoDBw5QVlZGbm4uw4cPp2/fvmRnZ2Npbm7mRMyaNQtLdXU1999/PyNHjsRms5Gdnc0777zDN0lNTeVIw4cPx/Lee+9xMgwePJi2zjzzTCwHDhzAtHnzZiytra1MnjyZyZMnM3nyZCZPnkxdXR2Wv/71rxyvAwcOUF9fjykiIoLMzEyOlJmZiaWmpoYjDRs2jJNl3759WPr27cvR2Gw2SktLiYiIwBIVFcWKFSvo27cvR9O7d28s9fX1iIh0RgYiIvKtzjnnHB588EEsv/nNbwgEAhxNTU0NCQkJTJo0iRdeeIEtW7YQHx/PlClTsMTGxnKiWltbaY9BgwZxpJqaGhISEpg0aRIvvPACW7ZsIT4+nilTpmCJjY3lRDz++OP867/+KwMHDqStlpYWysrKGDFiBA8
DBHc9ZZZ3GkgQMHYjl48CAnQ+/evfkura2tWPbv38+KFStYsWIFK1asYMWKFXz66adY9u3bx/E6cOAAlt69e2MYBkdyOBxYDh48yJEGDRrEybJ7924sffr04Zucc845xMTE0F69e/fG0tTUhIhIZ2QgIiLfae7cuVx88cWY9uzZQ21tLUdqbW1l0qRJ7Nq1C9NDDz3Erl27+Oc
8kzzzyDJTY2lmMVCoVoa/v27bRHYmIi
W2tjJp0iR27dqF6aGHHmLXrl3885
5JlnnsESGxvLiSosLGT37t2sW7eO+++/nyuvvJLIyEgsBQUFHDx4kCPV1dVxpA8++ADL4MGD6ShnnXUWlu9
ts3LiRjRs3snHjRjZu3MjGjRvZuHEjGzdu5Mo
+R42Ww2IiIiMLW0tBAIBDhSbW0tliFDhnCkxMRETpbvfe97WA4cOMA3ue2229izZw+WlpYWpkyZwoEDBziaAwcOYPnxj3+MiEhnZCAiIu3ywgsv8G22bt3Kp59+iumyyy7jvvvuY/DgwZjef/99jpVhGFiCwSBtffjhhxyPrVu38umnn2K67LLLuO+++xg8eDCm999/n5PB6/Xy8ssvM2vWLJ588klGjRrF/PnzqaqqYvfu3fTr1w9TKBRi9+7dHOnNN9/k66+/pq1169Zhufzyy+kow4cPJzIyElNDQwPJycn85Cc/4Sc/+Qk/+clPeO211/j00085ePAgMTExHC/DMLjiiiuwLFiwgLYCgQCvv/46lmuvvZZT6ayzzsJSX1/P0SxZsoTXX38dk8PhwOFwYPrggw+49957OZodO3ZgioiI4IwzzkBEpDMyEBGRdvnRj37E7bffzjc544wzsLz33nvU1tZi8nq93H333Vg++ugjLIZhYHnvvfd44403eOONNzDZ7XYsr7/+OpWVlRw8eJDVq1dz9913czzOOOMMLO+99x61tbWYvF4vd999N5aPPvqI4xUIBJg6dSpPP/009957L2+++SaWjz76iAMHDmDq168fQ4YM4Ui7du3i2muv5Z133mHr1q1MmzaNDz74ANPAgQMZO3YsHaV3797cdNNNmEKhEJMmTcLr9dLa2srDDz/ME088wdSpU8nJyeFEzZo1C8vvfvc75s2bx1tvvUV5eTmjRo3C5/NhSk9PJyMjg1MpOTkZyz/+8Q+O9I9
IM5c+ZgWbx4MYsXL8byxBNPUFVVxZE+/PBDTBdddBEiIp2VgYiItNv8+fOJi4vjaM4
3wuu+wyTKFQiOHDh3P22Wdz3nnn8e6779KvXz9Mu3fvxpKenk5ERAQmn8/HuHHjmDJlCqbRo0cTFxeH6auvvuJnP/sZkZGRXHvttcTExBAdHc2xOv/887nsssswhUIhhg8fztlnn815553Hu+++S79+/TDt3r2b4/XDH/6Qe+65B1NLSws
nPsdls2Gw2L
8ckKhEK
+I
wDAMjnTWWWexceNGRowYwcUXX8xLL72Epbi4mD59+tCR/v3f/x2Hw4GpsrKS733ve0RERHD
fdjWbJkCYZhcCKysrLIy8vD8tBDD3H11Vfzi1/8gvfffx/TueeeS2lpKadaWloalo8++oi2WltbufHGG/nqq68w3XzzzVxzzTVcc801TJ06FcvUqVMJBAJYGhsbaWlpwTR8+HBERDorAxERaTe73c7jjz/ON/njH
IiBEjMB06dIgvv/ySYcOGsX79eq677jpMLS0tbNiwAVP
v155JFHiIiIwHLw4EFMNpuN8vJykpKSaGvixIls2LCB3r17czz++Mc/MmLECEyHDh3iyy+/ZNiwYaxfv57
sOU0tLCxs2bOB4PfLII5SUlPC9730P0/79+9m/fz+moUOHsmzZMu644w6OZurUqRQVFREVFYXF4XCwatUqfvnLX9LRBg8ejNvt5
iMiIoK2UlJSWL9+PaNHj+ZkKC4uZtmyZVx44YW0FRkZyc0338zf/vY3zjnnHE61q666ijPPPBPTu+++S1v/9m
xpYtWzDFxcXx+OOPY1mwYAGDBg3C5PP5mDFjBpZ3330Xy7XXXouISGdlICIi/+2Xv/wl4XCYcDjM4sWLOZrJkycTDocJh8OEw2HOOOMMLEOGDGHTpk18/PHHrF27Fo/Hw7Zt28jIyMDlchEOhwmHw2RkZGD5zW9+g9/vZ82aNVRXV/P1119jufTSS/nwww+pq6tjzZo1fPnll6xcuZLY2Fj27t1LOBzG7/fTVnFxMeFwmHA4zK233sqRhgwZwqZNm/j4449Zu3YtHo+Hbdu2kZGRgcvlIhwOEw6HycjIwDJt2jTC4TDhcJjFixfTHtOnT6exsZEdO3awdu1a1q5di8/n45
CfTpk3j28ydO5evv/6aP
5z2zZsoXPPvuM66+/niNNmzaNcDhMOBxm8eLFWKZNm0Y4HCYcDrN48WIs06ZNIxwOEw6HWbx4MW316dOHcDhMOBymubmZtoYMGcK
75Kc3Mz69evZ82aNezYsYO
3vZGRk0F59+vQhHA4TDodpbm7maKZNm8a2bdvw+XysWbOGt99+m2AwyNKlS4mNjaWt4uJiwuEw4XCYW2+9lWPRp08fwuEw4XCY5uZm2jIMg8mTJ2NavXo1bRUUFBAOhwmHw+zcuRO73Y4lJiaG3bt3Ew6HCYfDlJaWYnnzzTcxDRw4kLFjxyIi0lkZSIcKhUJs2LCB1atXs27dOoLBIMeqV/46RKRzO
88xk9ejTDhg2jPex2O2PGjCEtLQ3DMDhScnIyY8aMoX
pws559/PqNHj2bYsGGcSueccw6jR49m9OjRDBkyhPbq3bs3mZmZXHrppXQWvXv3JiMjgzFjxnDOOedwKg0ZMoQxY8ZwxRVX0Lt3bzpaXl4epn379lFVVcWJaG1t5c0338R06623YhgGInLq9Mpfhxw/A+kwK1euZPjw4UyfPp05c+Zw++23c+mll7J48WJEREQ6kx/+8IeMGzcO0/PPP8+JWL16Nbt27aJfv37MmTMHEZHOzEA6RGVlJfPmzWPo0KG8/PLLbN26lVdffZUf
jHPPbYY7zyyit8k1GL/sb6TwIcTcMXzeSu2I6IiMjJ9sgjjxAREcEf/vAHdu/ezfF64oknMP32t79l8ODBiMjJNWrR31j/SYCjafiimdwV25H2M5AOsWjRInr37s3zzz+P0+kkKiqKlJQUnn32Wc4880yee+45vsnSScnkrtjO+k8CtNXwRTO5K7ZRMPo8RES6sjFjxvDaa6/x2muvMX36dKRzSE5O5sknn2Ty5Ml88MEHHI+mpibOPfdcfvWrX3HfffchIiff0knJ5K7YzvpPArTV8EUzuSu2UTD6PKT9DKRDREREMGLECM4++2zastlspKam8tlnn/FNhg7oS9Xtl5C7YjvrPwlgaviimdwV21g6KZmhA/oiItKVJSYmMmHCBCZMmMAPf/hDpPO44447ePHFF8nMzOR4xMTE8OKLL7J48WL69OmDiJx8Qwf0per2S8hdsZ31nwQwNXzRTO6KbSydlMzQAX2R9jOQDlFWVkZJSQlHam1t5e9
zv9+vXj2wwd0Jeq2y8hd8V2TLkrtrF0UjJDB/RFRERERHq2oQP6UnX7JeSu2I4pd8U2lk5KZuiAvsixMZDT6sUXX+Tzzz8nKyuLI/XKX0ev/HX0yl9H
x1nDe/moYvmpn1f17lY8/HnDe/ml756+iVv45e+evolb8OEREREekZeuWvo1f+Onrlr6NX/jrGL17Imb03YV
yf/hvPnV9MpfR6/8dfTKX0ev/HXIdzOQ02bTpk089thjnHPOOeTl5XGkcNFVhIuuIlx0FeGiqzhwz/d5zFjNnV++y
P5jCxajrD3ridYW/czrA3bufJoXWIiIiISM8QLrqKcNFVhIuu4ot/u4Brzl/BNeev4JrzVzB0QF+q7vgx4aKrCBddRbjoKsJFVyHfzUBOi8rKSu644w7OOussnn/+efr378+3afiimdE
dyYcJDPeg/E9OjwGEpWv4vH48Hj8XDnnXciIiIiIj1LIOijzF1AW1W3X0Luiu2s/ySAHBsD6XAlJSXk5eURGxvLypUrGTp0KN+m4YtmcldsY+mkZOJmLcAUGRtPyO9lV/Ec1n8SQERERER6ptqGcur9bkx2m4PV/5jE0AF9q
9EnJXbGf9JwGk/QykQ91
08/vjj/OhHP2LlypU4HA6+y4t/3cnSSckMHdAX070xMwj5vZgu8b7FmtdXIyIiIiI9T21jOZXbSzDZbQ6ynIVYhg7oS9Xtl1C49p9I+xlIh/n1r3/NqlWr+NnPfsayZcsYMGAA7VFw9XkMHdAXy5a+FxKTnY/l1urfEqyrRkRERER6jkDQR5m7AJPd5iA1YRyJsU7aGjqgL1V3XIK0n4F0iGeeeYa1a9dy7bXXUlxcTFRUFCciJjuf6JQ0TJGx8TSVFiEiIiIiPUMg6KPMXYAlMdZJZvJM5MQZyCn3xRdfsGjRIkzNzc3MnTuXuXPnMnfuXObOncvcuXOZO3cuhw4doj2GvXE7pvjCVUSnpBHye9lfV0NTaREiIiIi0v3VNpRT73djstscZDkLsYSLrkKOn4Gcclu2bOHAgQOY/vKXv1BRUUFFRQUVFRVUVFRQUVFBRUUFra2tHKuY7HwsTaVFBOuqEREREZHuq7axnMrtJZjsNgdZzkLk5DGQU27MmDF4PB48Hg8ejwePx4PH48Hj8eDxePB4PHg8HiIjIzlWtpR04vIWYNlRcAOhPV5EREREpPsJBH1UbivBZLc5SE0YR2KsEzl5DKTL6z8qm+iUNCxNpUWIiIiISPcSCPoocxcQCPow2fs5yEyeiZxcBtItxOUtIDI2HtPe9aU0lRYhIiIiIt1HbUM59X43ptSE8WQ5C5GTz0C6hchB8Qye9QSWvVWlBOuqEREREZGur97vpnJ7CZbUhHHYbQ7k5DOQbsOWkk5Mdj6mkN/L7uI5iIiIiEjXFgj6qNxegiXzwhkkxjqRU8NAupWY7HyiU9IwhfxevAUTEREREZGuKRD0UeYuoN7vxmS3OchMnomcOgbS7cTlLcCyv66GptIiRERERKTrqW0op97vxmS3OZiesRg5tQyk24kcFM+5hSux7K0qJVhXjYiIiIh0HYGgj8rtJVgyk2dgtzmQU8tAuiVbSjrRKWlExsYT8ntpKi1CRERERLqGQNDHsxtuw5KaMJ7UhPHIqWcg3VZ84Sp6DzoX0/66GrwFExERERGRzq9yWwmBoA+T3eYgy1mIdAwD6dbi8hZg2V9Xw96qUkRERESk86ptLKe2sRyT3eZgesZipOMYSLcWOSiecwtXYmkqLSJYV42IiIiIdD6BoI8ydwGW1IRx2G0OpOMYSLdnS0knOiUNU8jvZXfxHERERESkcwkEfTy74TYsqQnjyUyeiXQsA+kR4gtXEZ2Shink9+ItmIiIiIiIdB71fjeBoA+T3eYgy1mIdDwD6TFisvOx7K+rIVhXjYiIiIicfrWN5ZS5CzDZbQ6ynIXI6WEgPYYtJZ2Y7HwsOwpuIFhXjYiIiIicPoGgj8ptJVhSE8aRGOtETg8D6VFisvOJTknD0lRahIiIiIicHoGgjzJ3AYGgD7vNQWKsk8zkmcjpYyA9TnzhKiJj44mMjWd/XQ1NpUWIiIiISMe
Sin3u/GkuUsRE4vA+mRBs96gpDfi6mptIhgXTUiIiIi0nFqG8up3F6CyW5zkOUsxG5zIKeXgfRItpR0YrLzMUXGxrOj4AZCe7yIiIiIyKkXCPqo3FaCJTVhHImxTuT0M5AeKyY7n/5XZhPyezHteno2IiIiInJqBYI+ytwFBII+THabg8zkmUjnYCA9Wkx2Ppb9dTU0lRYhIiIiIqdObUM59X43JrvNwfSMxUjnYSA9WuSgeM4tXImlqbSIYF01IiIiInLy1fvdVG4vwZLlLMRucyCdh4H0eLaUdGKy87HsLp6DiIiIiJxcgaCPMncBltSE8STGOpHOxUDk/xWTnU90ShqmkN+Lt2AiIiIiInLyVG4rIRD0YbLbHGQ5C5HOx0Dk/4rLW0BkbDym/XU1BOuqEREREZETV9tYTm1jOSa7zUGWsxDpnAxE/q/IQfHEZOdj2VFwA8G6akRERETk+AWCPsrcBVhSE8aRGOtEOicDkTb6j8omOiUNy+7iOYiIiIjI8QkEfTy74TYsqQnjyUyeiXReBiJHiC9cRXRKGqaQ38uu4tmIiIiIyLG
SgnEPRhstscZDkLkc7NQOQoYrLzsexdX0qwrhoRERERa
axnIqt5dgstscZDkLkc7PQOQobCnpxOUtwLKj4AZCe7yIiIiIyHcLBH2UuQuwpCaMIzHWiXR+BiLfoP+obKJT0rDseno2IiIiIvLtAkEfZe4CLImxTjKTZyJdg4HIt4jLW4Blf10NTaVFiIiIiMg3q20oJ7DPh8luc5DlLES6DgORbxE5KJ7zFm3G0lRaRLCuGhERERH53+r9biq3lxAI+jBlOQux2xxI12Eg8h0iB8UTk52PZXfxHERERETkfwoEfZS5C7CkJownMdaJdC0GIu0Qk51PdEoappDfi7dgIiIiIiLy/ytzFxAI+jDZbQ6ynIVI12Mgx626uoF8whgAACAASURBVBqv18uxOnToEBs2bGD16tVs2LCBQ4cO0RXE5S3Asr+uhr1VpYiIiIgI1DaWU+93Y7LbHEzPWIx0TQZyXDZv3kxubi6bN2/mWLz99tuMHDmS6dOnM2fOHKZPn87IkSN5++236ewiB8VzbuFKLLuenk2wrhoRERGRniwQ9FHmLsCSmjAOu82BdE0Gcsy2bNlCXl4ex8
9ZKXl4dhGDz33HP8/e9/x+VyYRgGt99+Ow0NDXR2tpR0olPSsOwunoOIiIhITxUI+ihzF2BJTRhPZvJMpOsykHYLhUIsWrSIm2++mZaWFo7V66+/TnNzM/fccw8/+clPiIyM5LLLLmPevHkcOHCAsrIyuoL4wlVExsZjCvm97CqejYiIiEhPVNtQTr3fjcluc5DlLES6NgNpt1mzZrFw4UIyMjJ44IEHOFafffYZpgEDBtDWhRdeiOnzzz+nqxg86wkse9eXEqyrRkRERKQnqW0sp3J7CSa7zUGWsxDp+gyk3S644AKWLFnCM888Q0xMDMfqiiuuwPTXv/6Vtt566y1MF198MV2FLSWduLwFWHYU3EBojxcRERGRniAQ9FG5rQRLasI4EmOdSNdnIO02Z84cRowYwfEaO3YsEyZMYNGiRdx1112sWrWK3/72tzz22GNcffXVTJo0ia6k/6hsolPSsOx6ejYiIiIi3V0g6KPMXUAg6MOUmjCezOSZSPdgIB3q6quvJj4+njfffJP777+f8vJy4uLimDhxIoZh0F5JSUkkJSWRlJREUlISSUlJPPXUU3S0uLwFWPbX1dBUWoSIiIhId1
UE69343JbnOQmTwD6T4MpMMsX76c22+/nYSEBNauXYvH42Ht2rVccMEFTJ8+nZdeeon28ng8eDwePB4PHo8Hj8fDnXfeSUeLHBTPuYUrsTSVFhGsq0ZERESkOwoEfVRuL8GSmTwDu82BdB8G0iFaW1spKioiLi6O4uJihg4dimno0KEsWrSI8847j8cee4xDhw7R1dhS0olOScOyu3gOIiIiIt1NIOjj2Q23YUlNGE9qwnikezGQDvHpp5/y1VdfcemllxIdHU1bERERXHLJJezfv5/NmzfTFcUXriI6JQ1TyO9lV/FsRERERLqTym0lBII+THabgyxnIdL9GEiH6N+/P6ZQKMTRHDp0CFN0dDRdVUx2Ppa960sJ1lUjIiIi0h3UNpZT21iOyW5zkOUsRLonA+kQAwYMICEhgcrKSnbu3Elbe/fupbq6mpiYGC6++GK6KltKOjHZ+Vh2FNxAaI8XERERka4sEPRR5i7AkpowjsRYJ9I9GchJ53a7SUpKIjc3l7bmzZvHwYMHmTJlCqtWraK6upo33niDKVOmsGfPHu6
34Mw6Ari8nOJzolDcuup2cjIiIi0lUFgj7K3AVYEmOdZCbPRLovA+kwGRkZLFmyhIiICO6
35yc3PJz89n3759LFy4kLFjx9IdxOUtwLK
oam0iJEREREuqLahnLq/W5MdpuDLGch0r0ZyHHJzMzE4/Fwww03cCSn04nH42Hp0qUcacSIEVRWVrJ27VqWLl3K2rVrqaqqYsyYMXQXkYPiObdwJZGx8ZiaSosI1lUjIiIi0pUEgj4qt5dgyUyegd3mQLo3Azkthg4dSnp6OkOHDqU7sqWk03vQuViaSosQERER6SoCQR/P
gNS2rCeFITxiPdn4HIKRJfuIrolDRMB/fswFswEREREZGuoLahnEDQh93mwG5zkOUsRHoGA5FTKCY7n8jYeEJ+L/vragjt8SIiIiLSmdU2llPb+CcsWc5CpOcwEDmFbCnp9B+VjeWfdwwntMeLiIiISGcUCPqo3FZCIOjDlJowjsRYJ9JzGIicYjHZ+USnpBEZG4+pqbQIERERkc4mEPRR5i4gEPRhSox1kpk8E+lZDEQ6QFzeAkJ+L6a960tpKi1CREREpDOpbSin3u/GZLc5yHIWIj2PgUgHiBwUz7mFK7E0lRYRrKtGREREpDMIBH1Ubi/Bkpk8A7vNgfQ8BiIdxJaSTnRKGpbdxXMQEREROd0CQR9l7gIsqQnjSU0Yj/RMBiIdKL5wFZGx8ZhCfi+7imcjIiIicjrVNpRT73djstscZDkLkZ7LQKSDDZ71BJa960sJ1lUjIiIicjrU+91Ubi/BZLc5yHIWIj2bgUgHs6WkE5Odj2V38RxEREREOlog6KPMXYAlNWEcibFOpGczEDkNYrLziU5JwxTye/EWTERERESkI5W5CwgEfZjsNgeZyTMRMRA5TeLyFmA5uGcHwbpqRERERDpCbWM59X43psRYJ9MzFiNiMhA5TSIHxROXtwBTyO9lR8ENBOuqERERETmVAkEfZe4CLIkDU7HbHIiYDEROo/6jsolOScOyv64GERERkVMlEPRR5i7AkhjrJDN5JiIWA5HTLL5wFZa9VaU0lRYhIiIicirUNpRT73djstscZDkLEWnLQKQTOLdwJZGx8YT8XppKiwjWVSMiIiJyMgWCPiq3l2DJchZitzkQactApBOwpaQTnZKGpam0CBEREZGTJRD08eyG27CkJownMdaJyJEMRDqJuFkLiIyNx7S
oZdxbMRERERORlqG8oJBH2Y7DYHWc5CRI7GQKQTGTzrCSx715cSrKtGRERE5ETU+91Ubi/BZLc5yHIWIvJNDEQ6EVtKOjHZ+Vh2F89BRERE5HgFgj4qt5dgSU0YR2KsE5FvYiDSycRk5xOdkoYp5PfiLZiIiIiIyPGo3FZCvd+NyW5zkJk8E5FvYyDSCcXlLcCyv66GYF01IiIiIseitrGc2sZyTHabgyxnISLfxUCkE4ocFE9Mdj6WHQU3ENrjRURERKQ9AkEfZe4CTImxTlITxpEY60TkuxiIdFIx2flEp6Rh2fX0bERERETao8xdgN3mwJKZPBOR9jAQ6cTi8hZg2V9XQ1NpESIiIiLfpraxnMA+H4GgD7vNQZazEJH2MhDpxCIHxXNu4UosTaVFBOuqERERETmaQNBHmbuAQNCHKTN5BnabA5H2MhDp5Gwp6USnpGFpKi1CRERE5EiBoI8ydwF2mwNTasJ4UhPGI3IsDES6gPjCVVj219XQVFqEiIiISFu1DeUE9vkIBH3YbQ4yk2cgcqwMRLqIcwtXYmkqLSJYV42IiIiIKRD0Ubm9hEDQhynLWYjd5kDkWBmIdBG2lHSiU9Kw7C6eg4iIiEgg6KNyWwmW1ITxJMY6ETkeBiJdSHzhKiJj4zGF/F52Fc9GREREe
ahnJqG8sx2W0OspyFiBwvA5EuZvCsJ7DsXV9KsK4aERER6Znq/W4qt5dgyXIWInIiDES6GFtKOv2vzMayu3gOIiIi0vMEgj7K3AVYUhPGkxjrROREGIh0QXGzFhCdkoYp5PfSVFqEiIiI9Cy1DeUEgj5MdpuDLGchIifKQKSLisnOx9JUWkSwrhoRERHpGer9biq3l2C3ObDbHGQ5CxE5GQzkuFVXV+P1ejkeH3/8MW+99RaVlZX4/X7k2NlS0onJzseyu3gOIiIi0v0Fgj7K3AWYAkEfibFOEmOdiJwMBnJcNm/eTG5uLps3b+ZYfP755+Tm5jJ27FjuvPNO8vLyyMjIYOHChcixi8nOp/+V2ZhCfi+7imcjIiIi3VvlthICQR8mu81BlrMQkZPFQI7Zli1byMvL41gdOnSI3NxctmzZwrx589i6dStr1qzh0ksvZdGiRaxatQo5dv1HZWPZu76UYF01IiIi0j3V+93UNpZjstscZDkLETmZDKTdQqEQixYt4ua
6alpYVjtXz5cj766CPuuececnJyiIqKIjExkSeeeILevXvz8ssvI8fOlpJOTHY+lt3FcxAREZHuJxD0UeYuwJKaMI7EWCciJ5OBtNusWbNYuHAhGRkZPPDAAxyrN954g5iYGKZOnUpbAwYM4Pnnn+eee+5Bjk9Mdj7RKWmYQn4v3oKJiIiISPdSua2EQNCHyW5zkJk8E5GTzUDa7YILLmDJkiU888wzxMTEcCxaW1vZunUrl19+OYZhcOjQId5++22qq6s5dOgQw4cPZ/jw4cjxi8nOJzI2HtP+uhqCddWIiIhI91DbWE5tYzkmu81BlrMQkVPBQNptzpw5jBgxguPh9Xo5dOgQ/fv3Z/ny5aSmpnL
eSm5vL8OHDee211zgWSUlJJCUlkZSURFJSEklJSTz11FP0ZLaUdPqPysayo+AGREREpOsLBH1UbivBkpowjsRYJyKngoF0CK/Xi6mqqopHHnmE6dOn85
+Z/Mnz+ffv36ce+997J69Wray+Px4PF48Hg8eDwePB4Pd955Jz1dTHY+0SlpWLwFExEREZGurXJbCYGgD5Pd5iAzeSYip4qBdIhwOIxp165dPPnkk9xxxx2MGjWKG264gRUrVtC7d28ee+wx5MTFZOdjObhnB8G6akRERKRrqm0sp97vxmS3OchyFiJyKhlIh4iKisLkcDjIyMigrSFDhvDTn/6Uzz77jM8
xw5MbaUdOLyFmAK+b3sKLgBERER6XoCQR+V20oIBH2YUhPGkRjrRORUMpAO8eMf/xjTsGHDOJp+/fphamhoQE5c/1HZRKekYfEWTERERES6lsptJQSCPkx2m4PM5JmInGoG0iEiIyNxOBy8++67tLa2cqR9+/Zhuvjii5GTIy5vAZb9dTUE66oRERGRrqHe76a2sRyT3eYgy1mISEcwkA4zYcIEmpubKSsroy2fz8df/vIXUlNTiYyMRE6OyEHxxGTnY9lRcAMiIiLS+QWCPsrcBVhSE8aRGOtEpCMYyEnndrtJSkoiNzeXtnJzcznnnHP43e9+R3FxMW+
TZvvPEGU6dOxXTfffchJ1dMdj7RKWlYvAUTERERkc6tclsJgaAPk93mIDN5JiIdxUA6TP/+/SktLSUjI4OnnnqKW2+9lfz8fEyLFy/mBz/4AXLyxWTnExkbj2l/XQ3BumpERESkc6ptLKe2sRyT3eYgy1mISEcykOOSmZmJx+Phhhtu4EhOpxOPx8PSpUs50sCBA1m0aBG1tbUsXbqUNWvWsG7dOtLT05FTw5aSTv9R2Vh2FNyAiIiIdD6BoI/axj9hSU0YR2KsE5GOZCCnxRlnnEF6ejqJiYnIqReTnU90ShqWXcWzERERkc6lclsJ9X43JrvNQWbyTEQ6moFIDxGTnY9l7/pSgnXViIiISOdQ73dT21iOyW5zkOUsROR0MBDpIWwp6cRk52PZXTwHEREROf0CQR9l7gIsqQnjSIx1InI6GIj0IDHZ+USnpGEK+b3sKp6NiIiInF61DeUEgj5MdpuDzOSZiJwuBiI9TEx2Ppa960sJ1lUjIiIip0e9301t458w2W0OspyFiJxOBiI9jC0lnZjsfCy7i+cgIiIiHS8Q9FG5vYRA0IcpMdZJYqwTkdPJQKQHisnOJzolDVPI72VX8WxERESkY9U2lFPvd2Oy2xxkOQsROd0MRHqomOx8LPvragjWVSMiIiIdo97vpnJ7CZYsZyEinYGBSA9lS0knJjufyNh4Qn4vu4vnICIiIqdeIOijcnsJltSE8STGOhHpDAxEerCY7HwsIb+XptIiRERE5NSqbSin3u/GZLc5yHIWItJZGIj0cINnPYGlqbSIYF01IiIicmoEgj4qt5dgyXIWItKZGIj0cLaUdKJT0rA0lRYhIiIiJ18g6KPMXYDd5sCUmjCexFgnIp2JgYgQX7gKy/66GppKixAREZGTq97vpt7vJhD0kRjrJDN5BiKdjYGIHBaXtwBLU2kRoT1eRERE5OQIBH2UuQuwpCaMw25zINLZGIjIYf1HZROdkoZl19OzERERkZOjzF2AJTHWSWrCeEQ6IwMR+W9xeQuw7K+rYW9VKSIiInJiahvLqfe7MdltDrKchYh0VgYi8t8iB8UTl7cAS1NpEaE9XkREROT4BII+ytwFWFITxmG3ORDprAxE5H/oPyqb6JQ0TCG/l11Pz0ZERESOT+W2Eix2m4PM5JmIdGYGIvK/xGTnY9lfV0OwrhoRERE5NrWN5dQ2lmOy2xxkOQsR6ewMROR/saWkE5Odj2V38RxERESk/QJBH5XbSjDZbQ5SE8aRGOtEpLMzEJGjisnOJzolDVPI72VX8WxERESkfWobygkEfVgyk2ci0hUYiMg3isnOx7K
oZgXTUiIiLy7QJBH5XbS7BkOQsR6SoMROQb2VLS6X9lNqaQ30tTaREiIiLyzQJBH2XuAiypCeNJjHUi0lUYiMi3ipu1gOiUNEz762poKi1CREREjq7e76be78ZktznIchYi0pUYiMh3isnOx9JUWkSwrhoRERH5nwJBH2XuAiyZyTMQ6WoMROQ72VLSiU5Jw9JUWoSIiIj8T2XuAiyJsU5SE8Yj0tUYiEi7xOUtwLK
oZgXTUiIiLy/6ltLKfe78ZktznIchYi0hUZiEi7RA6KJyY7H8uOghsQERERCAR9VG4rwZKaMA67zYFIV2QgIu0Wk51PdEoall3FsxEREenpKreVEAj6MNltDjKTZyLSVRmIyDGJyc7Hsnd9KcG6akRERHqqer+b2sZyTHabgyxnISJdmYGIHBNbSjr9r8zGsrt4DiIiIj1RIOijcnsJlsRYJ4mxTkS6MgMROWZxsxYQGRuPKeT3sreqFBERkZ6mtqGcer8bk93mIMtZiEhXZyAix2XwrCew7Hp6NsG6akRERHqKQNBH5fYS7DYHdpuDzOQZiHQHBiJyXGwp6USnpGGKjI1nb1UpIiIiPUWZuwBTIOjD3s9BasJ4RLoDAxE5bnF5CzCF/F72ri8lWFeNiIhId1fbWE69343JbnOQ5SxEpLswkONWXV2N1+vlRPj9fiorK/niiy+QridyUDxxeQuIjI0nMjaeHQU3ICIi0p0Fgj4qt5VgSU0Yh93mQKS7MJDjsnnzZnJzc9m8eTMn4q677iIvL48PP/wQ6Zr6j8qm96BzCfm9mHYVz0ZERKS7qtxWQiDow2S3OchMnolId2Igx2zLli3k5eVxokpKSqitrUW6vri8BVj2ri8lWFeNiIhIdxMI+qhtLMdktznIchYi0t0YSLuFQiEWLVrEzTffTEtLCydi+
tLFy4ELvdjnR9kYPiiU5Jw9JUWoSIiEh3Egj6KHMXYEmMdZIY60SkuzGQdps1axYLFy4kIyODBx54gOPV0tLCnDlzuOSSS7jmmmuQ7iG+cBWmyNh49tfVsLeqFBERke6i3u+m3u/GZLc5yEyegUh3ZCDtdsEFF7BkyRKeeeYZYmJiOF6
3v+fzzzykqKkK6l7i8BYT8Xky7np5NaI8XERGRri4Q9FHmLsCSmTwDu82BSHdkIO02Z84cRowYwYmoqqri5ZdfpqCggMGDByPdS/9R2USnpGFpKi1CRESkq6ttKMeSGOskNWE8It2VgXSYL774gnnz5jFmzBjGjRvHiUhKSiIpKYmkpCSSkpJISkriqaeeQk6/mOx8LHvXlxKsq0ZERKSrqve7qdxegsluc5B54QxEujMD6TD33XcfERERFBYWcqI8Hg8ejwePx4PH48Hj8XDnnXcip58tJZ3+V2Zj2V08BxERka4oEPRRuf3/YQ9+gKOuD/z/P/2QuOxitwkhlW43sKa9W01G+beeCVgxNAe21Uw9Qup0nLYZexBFLmKu7VX7k5FDpzc1PXJQDLaWqf9/SajTnFrppAQVk6jLwaEJ9yltunS3ex5JSH57uiHkj7/vfvt9f49akAD5t5vX47ETIzc7QG52AJFUZiET4tlnn2Xfvn08/PDDZGRkIKlt7t1bceYXYvTUVSMiIpJsOruCdHYFSch0eVgTeBCRVGchE2Lfvn0kfOMb38Dv9+P3+/H7/Tz99NMklJeX4/f76evrQ1LDx2/8MgmDXWF66qoZPB5GREQkWfTGo9QHN2EU561DZDqwkAmxbNky1qxZw5o1a1izZg1r1qxhzZo1fPrTnybhhhtuYM2aNVx66aVIanAXleHML8R494f3ICIikizqg5swcrMDLJlfgsh0YCET4qtf/Spbtmxhy5YtbNmyhS1btrBlyxYKCgpIKC8vZ8uWLbhcLiR1ZJVVYfS3txJvb0FERGSq6+wK0tkVJCHT5aH4qnWITBcWMuaCwSB+v5/y8nJkenPlL8V9YxnGf23fiIiIyFTWG4/SdGQnxpL5t5CbHUBkurAQkXE19+6tpGfnkDDYFaanrhoREZGpqrMrSGdXkIRMl4fivApEphMLuSDFxcXYtk1paSkfFggEsG2bXbt2cS4PPPAAtm2zdOlSJHVllVVh9NRVM3g8jIiIyFTTG49SH9yEUZy3DpHpxkJExp27qAxnfiHGuz+8BxERkammPrgJIzc7wJL5JYhMNxYiMiHmrt+K0d/eSry9BRERkamisytIZ1eQhEyXh+Kr1iEyHVmIyIRI/0QO7hvLMP5r+0ZERESmgt54lKYjOzFyswPkZgcQmY4sRGTCzL17K+nZOSQMdoXpqatGRERksnV2BensCpKQ6fKwJvAgItOVhYhMqKyyKoyeumoGj4cRERGZLL3xKPXBTRjFeesQmc4sRGRCuYvKcOYXYvTUVSMiIjJZmjp2YuRmB1gyvwSR6cxCRCZcVlkVRn97K/H2FkRERCZaZ1eQA8caSch0eSi+ah0i052FiEw4V/5S3DeWkTDYFaanrhoREZGJ1BuP0nRkJ0ZudoDc7AAi052FiEyKuXdvxehvbyXWXIeIiMhE6ewK0tkVJCHT5aE4bx0iAhYiMmm8DzZg9NRVIyIiMhF641Hqg5swivPWkenyICJgISKTxpW/FGd+IQmDXWHe3X4PIiIi462pYydGpsvDkvkliMgfWYjIpMoqq8KI7asj3t6CiIjIeOmNRzlwrBFjTeBBROR/WIjIpHLlL8WZX4jRU1eNiIjIeKkPbsJYMr+E3OwAIvI/LERk0s1dvxWjv72VeHsLIiIiY+3AsUZ634+SkOnyUJy3DhH5UxYiMunSP5FDVlkVxn9t34iIiMhY6o1HaerYSW88SkJudoBMlwcR+VMWIjIlZJVV4cwvJGGwK0xPXTUiIiJjpbMrSG88SkKmy8OawIOIyJ+zEJEp4+M3fhmjp66aweNhRERELlZvPEp9cBMJmS4PxXnrEJEzsxCRKcNdVIYzvxCjp64aERGRi3Ug1IiROcvDkvkliMiZWYjIlJJVVoUR21dHvL0FERGRC9XZFaTpyE4SMl0eiq9ah4icnYWITCmu/KW4byzD6KmrRkRE5EI1HdmJkZsdIDc7gIicnYWITDlz796K0d/eSqy5DhERkfN14FgjnV1BEnKzAxTnrUNEPpqFiExJWWVVGO/+8B5ERETOR288SlPHTozcOUvIdHkQkY9mISJTUlZZFenZORg9ddWIiIiM1oFQI73xKAmZLg/FeRWIyLlZiMiUlVVWhdFTV83g8TAiIiLn0huP0nRkJ8aawIOIyOhYiMiU5S4qw5lfiNHf3oqIiMi5NHXsxMjNDpCbHUBERsdCRKa0rLIqjHd/eA/x9hZERETOprMryIFjjSRkujwUX7UOERk9CxGZ0lz5S3HfWIbRU1eNiIjI2TQd2YmRmx0gNzuAiIyehYhMeXPv3orR395KvL0FERGRDztwrJHOriAJmS4PxXnrEJHzYyEiSSG
Arjv7ZvRERE5HS98ShNHTsxlsy/hUyXBxE5PxYikhSyyqpIz84hYbArTE9dNSIiIkZnV5DeeJSETJeH4rwKROT8WYhI0sgqq8Loqatm8HgYERGR3niU+uAmjOK8dYjIhbEQkaThLirDmV+I0VNXjYiISFPHToxMl4cl80sQkQtjISJJJausioT07Bxi++qIt7cgIiLTV288yoFjjRhrAg8iIhfOQkSSiit/Kc78Qga7wiT01FUjIiLTV31wEwmZLg+52QFyswOIyIWzEJGkM3f9Voz+9lbi7S2IiMj009kVpLMriFF81TpE5OJYiEjSSf9EDu4byzB66qoREZHppTcepenITozc7AC52QFE5OJYyAVraWkhHA5zvgYHB3nllVd46aWX2Lt3L/F4HJHzNffurRj97a3EmusQEZHpo7MrSGdXkIRMl4fivHWIyMWzkAvyxhtvUF5ezhtvvMH5aGho4L
mPt2rVs3LiRO++8k2uvvZYf/ehHiJyvueu3kpCenUNPXTUiIjI99MajNHXsxCjOW0emy4OIXDwLOW9vvvkm69ev53w1NTVx
334/P5ePrppzl8+DA/+9nPWLRoEY888gjPPPMMIufDXVRGenYOCYNdYXrqqhERkdTX2RWkNx4lITc7wJL5JYjI2LCQURscHGTHjh18/etfZ2BggPO1Y8cO0tLS+MlPfkIgEMDhcJCfn89jjz3Gxz72MX784x8jcr6yyqoY7AqT0FNXzeDxMCIikrp641Hqg5swlsy/BREZOxYyanfffTc1NTUsX76c7373u5yvGTNmcP3115ORkcHpXC4XS5Ys4Q9/+AMi58tdVIYzvxCjp64aERFJXU0dO8l0ech0ech0eVgyvwQRGTsWMmpXXnkljz/+OI8++ihZWVmc
6enbu3MmHjYyM8M477zBr1ixELkRWWRVGbF8d8fYWREQk9fTGoxw41khvPEpvPMqawIOIyNiykFHbuHEj119/PWPtpz/9Kd3d3axZs4bR8vv9+P1+/H4/fr8fv9/Ptm3bkOnJlb8UZ34hRqy5DhERST31wU0YudkBcrMDiMjYspBJ9dp
HII4/wqU99ivXr1zNatm1j2za2bWPbNrZts2HDBmT6mrt+K0ZsXx3x9hZERCR1dHYF6ewKkpDp8lB81TpEZOxZyKRpamri
vu4uMf/zg/+clPcLvdiFyo9E/kkFVWhRF
kNERFLHgWP/ipGbHSA3O4CIjD0LmRQ7d+5k/fr1ZGdn09DQgM/nQ+RiZZVVkZ6dQ0JsCkxXcAAAIABJREFUXx2Dx8OIiEjyO3CskQPHGknIdHkozluHiIwPC5lw9913Hz/4wQ9YuHAhDQ0NeDweRMaKu6gMI7KpFBERSW698SgHjv0rRm52gEyXBxEZHxYyof7u7/6O3bt389d
dc88cQTzJ49G5GxlFVWRXp2DgmDXWFizXWIiEjy6uwK0tkVJCHT5WFN4EFEZPxYyIR59NFH2bNnD1/84hfZvn07DocDkfGQVVaF8e4P70FERJJTbzxKU8dOjDWBBxGR8WUhYy4YDOL3+ykvL8c4ceIEO3bsIOHkyZPce++93Hvvvdx7773ce++93Hvvvdx7770MDw8jcrHcRWWkZ+dg9NRVIyIiyaf3/Si98SgJmS4PudkBRGR8WciEePPNNzl16hQJv
Vr3jxxRd58cUXefHFF3nxxRd58cUXefHFFxkZGUFkLGSVVWH01FUzeDyMiIgkj954lMde/VuM4rx1iMj4s5ALUlxcjG3blJaW8mGBQADbttm1axfGTTfdhG3b2LaNbdvYto1t29i2jW3b2LaNbdukp6cjMhbcRWW4byzD6KmrRkREkkdTx06MTJeHJfNLEJHxZyEiKctdVIYR21fH4PEwIiIy9fXGoxw41oixJvAgIjIxLEQkZbnyl+LML8Tob29FRESmvqaOnRhL5peQmx1ARCaGhYiktKyyKtKzc0h494f3EG9vQUREpq7eeJQDxxoxlsy/BRGZOBYiktJc+UtJ+4QXo6euGhERm
qg5swcrMD5GYHEJGJYyEiKW/u+q0YQ8cjxNtbEBGRqaezK0hnV5CETJeH4qvWISITy0JEUl76J3Jw31hGwmBXmJ66akREZOo5cOxfMXKzA+RmBxCRiWUhItPC3Lu3YgwdjxBvb0FERKaOzq4gB441kpDp8lCctw4RmXgWIjJtZJVVkTDYFaanrhoREZkaeuNRmo7sxMjNDpDp8iAiE89CRKaNrLIqjP72VmLNdYiIyOTr7ArS2RUkITc7wJrAg4jI5LAQkWklq6wKo6euGhERmXwHjv0rRqbLg4hMHgsRmVayyqowBrvCxJ
EBGRyXPgWCOdXUESMl0e1gQeREQmj4WITDtz12/FePeH9yAiIpOjNx6lqWMnRnHeOkRkclmIyLTjLiojPTsHI9Zch4iITLzOriC98SgJmS4PS+aXICKTy0JEpqWssiqMd394DyIiMrF641Hqg5swivPWISKTz0JEpiV3URnp2TkYPXXViIjIxOnsCmJkujwsmV+CiEw+CxGZtrLKqjB66qoZPB5GRETGX288Sn1wE0Zx3jpEZGqwEJFpy11UhjO/EKOnrhoRERl/TR07MTJdHpbML0FEpgYLEZnWPn7jlzFi++oYPB5GRETGT288yoFjjRhrAg8iIlOHhYhMa+6iMpz5hRg9ddWIiMj4aerYiZHp8pCbHUBEpg4LEZn2ssqqMGL76hg8HkZERMZebzzKgWONGGsCDyIiU4uFiEx7rvylOPMLMXrqqhERkbHX1LETIzc7QG52ABGZWixERP6XrLIqjNi+OgaPhxERkbHTG49y4FgjRvFV6xCRqcdCROR/ceUvxZlfiNFTV42IiIydpo6dZLo8JORmB8jNDiAiU4+FiMj/kVVWhRHbV8fg8TAiInLxeuNRDhxrpDceJaH4qnWIyNRkISLyf7jyl+LML8ToqatGREQuXn1wE0ZudoDc7AAiMjVZiIicJqusCqO/vZV4ewsiInLheuNRet+PYhRftQ4RmbosRERO48pfijO/kITBrjCx5jpEROTC1Qc30RuPkpCbHSA3O4CITF0WKWZ4eJhoNEp7eztbtmzh9ttv56mnnuLo0aOcOHECETm3rLIqjP72VuLtLYiIyPnrjUfp7ApiFF+1DhGZ2ixSxMGDBykuLiYvL4+ioiL+5m/+hieffJK33nqLf/zHf+Tmm2+msLCQhQsXct9999HX14eInJkrfynO/EISBrvCxJ
EBGR81cf3ISRmx0gNzuAiExtFknul7/8JYsXL+a2224jHA7zsY99jCuuuIIlS5bw0EMP8eyzz/K9732P/Px8PvWpT3Hq1Cl2797Nddddx1e+8hVisRgi8ueyyqpIz84hIbavjnh7CyIiMnq98SidXUESMl0eiq9ah4hMfRZJqr+/n1tuuYUNGzYwa9Ysvve97/HWW28RDAZ5+eWXeeaZZygtLWXx4sXceuut/OxnP2Pv3r10dHTQ3NzMDTfcwIEDB7j22mvZvn07IvKnXPlLSfuEFyPWXIeIiIxefXATRuYsD7nZAURk6rNIUgsXLiQWi7Fnzx5ee+01
31VtxuN6Ph8Xj40Y9+xJEjR6isrGTbtm3cddddiMifmrt+K0ZsXx3x9hZEROTceuNROruCGGsCDyIiycEiST366KO88sor+Hw+LpRlWdx1113Yts11112HiPyp9E/k4MwvxIg11yEiIudWH9yEsWR+CZkuDyKSHCyS1IoVKxhLX/va1xCRP5dVVoUR21dHvL0FERE5u954lM6uIAmZLg9L5t+CiCQPixQxMDDAaG3fvh0RGR1X/lKc+YUYseY6RETk7OqDmzByswPkZgcQkeRhkSJ+/etfU1BQwHvvvcfZ9Pf3U1xczI4dO5gKWlpaCIfDiEx1c9dvxYjtqyPe3sIlVXsREZH/cUnVXnrjUXrfj5KQ6fKwZP4tiEhysUghvb29LFmyhN27d/NhP
5z1m4cCHhcJjMzEwm2xtvvEF5eTlvvPEGIlNd+idyyCqrwog11yEiIn+uPriJ3niUhMxZHnKzA4hIcrFIEVdffTUPPfQQCffddx
1q3DuOOOO/jWt75FwoYNG3j99deZTG+++S
169HJJlUvns1RmxfHX918ghG6MRJyp87gojIdFK049/Y99tejI87TtDZFSTh/xuYzf7wSkQk+VikkNLSUt566y3mzJnDvn37WLBgAXl5eezfv5+srCxaW1u5++67mSyDg4Ps2LGDr3/96wwMDCCSTLbcfgPPX/ZZjL95/1USQidOUv5cB5tWXoGIyHSy67Y8yp87wr7f9pLwhc88h2HNyGfz529BRJKPRYpxu928/v
3HDDDZw8eZLh4WEKCgpoaWlh9uzZTKa7776bmpoali9fzne/+11Ekolv9kw2fLOShPTsHG597zWOvLaX8uc62HVbHr7ZMxERmU58s2fSfOdiyp87wvOHO5j38d9iVK34Kr7ZMxGR5GORYmKxGCtXruTVV1/FaGtrY9myZZw4cYLJdOWVV/L444/z6KOPkpWVhUiyceUvxZlfyGBXmIR
9kT7LotD9/smYiITEe+2TNpvnMx9cEHMHKzA+RmBxCR5GSRQh599FGuvfZajh07Rl5eHu+88w62bXP99dfT3d1NYWEh27dvZ7Js3LiR66+/nrHg9/vx+/34/X78fj9+v59t27YhMtYuqdrLJVV7uaRqL5dU7aW0ewUJ1mWXUHjpr7j9h7u4pGovl1Tt5ZKqvVxStRcRkVR2SdVeLqnayyVVe7mkai+L/p99XHHoMoyHmv+KS6r2cknVXi6p2sslVXsRkeRhkSLefvtttm7dSsK3vvUtnn/+edLT00l4/PHHqa6uJmHbtm189rOfJdnZto1t29i2jW3b2LbNhg0bEBlrH1Sv4IPqFXxQvYIPqlfw
7jHRycn8/HV6bzsWVp7Lm5kw+qV/BB9Qo+qF7BB9UrEBFJZR9Ur+CD6hV8UL2CD6pX8IOB/ybt1QVcuu1v+MNrK/np7aV8UL2CD6pX8EH1Cj6oXoGIJA+LFOJ2u3n99de54447+LC
76ZQ4cO8elPf5qenh5E5PyFTpyk/LkOllTcz4zLLiFhINzAYHcbIiLTUV80RigYIeGSvsu44wvfoPy5I+z7bS8ikpwsUkR+fj5vvfUWc+bM4WycTicvvfQSGzZsQETOT+jEScqf62DXbXl85i9u5Nl3l2H8ct+P2ffbXkREppPQiZP8890/xwhlXsaNK/+C5jsXU/7cEfb9thcRST4WSaqzs5PTWZbFaN1555182P79+xGRs/vpW
Jrtvy8M2eScKz/7UMo/DSX/GTV4KIiEwnW39uQ2c3xitXXE6C
ZMmu9czIN7foeIJB+LJPX5z3+e8vJy3nvvPS5Gc3MzgUCAHTt2ICJnt2nVFfhmz8R4vc9PWlYBxs5l7YiITCfLf/cuhi/g5VjmZRi+2TNpvmsxIpJ8LJLUL37xC/793/+dJUuW8IUvfIFjx44xWn19fezYsYPFixdTUVHBDTfcwDPPPIOInB+nvxJjILybkXgEEZHpoC8a41BjBwkZHjdFFYWISGqwSFK5ubn827/9Gxs2bOC3v/0tK1euxO/3U1xczLp163j77bf5zW9+Q2dnJ7/5zW944YUXuPXWWykoKOC6666jpqaGWbNm8eKLL/KDH/wAETk/H1SvIH1OAWlZBSSMxCP02zWIiEwHzbWtGBkeN76Alw+qVyAiyc8iyd199910dHTw93
97jdbsLhMPv27aO0tJQvfvGLfP7zn+eLX/wiVVVVdHR00NvbyxVXXEFTUxOvvfYan/nMZxCRC+f0V2IMhBsYiUcQEUllfdEYhxo7MIoqChGR1GGRAmbMmMHf/u3f8tZ
H666/zs5/9jM997nNceeWV/MVf/AXXXHMNmzdvZs+ePbzzzju8/PLL5OTkMJmKi4uxbZvS0lJEkln6nALSsgow+u0aRERSWXNtK4Yv4MUX8CIiqcMiSd1000187Wtf43QDAwPMmTOH/Px8duzYwc9
nNeeOEF6uvr+fKXv4zP5yM9PR0RGVuOeauxXF4SBsINjMQjiIikor5ojEONHRhFFYWISGqxSFK/+93vCIfDGG+
TbXXHMNAwMDiMjEcuSUkp5VgNFv1yAikoqaa1sxMjxufAEvIpJaLJLUjBkzOHHiBCIyNaTNuQ5jINyAiEiq6YvGONTYgXHr5lWISOqxSFLz5s2jv7+f/Px8li1bRkVFBQkrVqxg2bJlLFu2jGXLlrFs2TKWLVvGsmXLWLZsGcuWLeOzn/0sIjK2HDmlpGUVYPTbWxERSSWhYAQjw+PGF/AiIqnHIkm9/PLLeDwehoaG6O7upru7m4Tu7m66u7vp7u6mu7ub7u5uuru76e7upru7m+7ubnp6ehCRseeYtxqj365BRCRV9EVjPP/AHoyiikJEJDVZJLHm5mbeeecdDh8+zNNPP03CW2+9xeHDhzl8+DCHDx/m8OHDHD58mMOHD3P48GEOHz7MwYMHEZGx58gpxXJ5MfrtrYiIpIJQMIKR4XGzsCQPEUlNFkkuPT0dh8OBw+Fg7ty5OBwOHA4HDocDh8OBw+HA4XDgcDhwOBw4HA4cDgciMj6c/kqMfrsGEZFk1xeN0VzbilFUUYiIpC6LFHH11Vfzyiuv4HA4EJHJ48gpxXJ5MQbCDYiIJLNQMEJfNEZChsfNwpI8RCR1WYiIjDGnvxLj/YPfREQkWfVFYxxsbCfD4yahqKIQEUltFiIiY8yRU4rl8mIMhBsQEUlGoWCEUDBCXzRGhsfNwpI8RCS1WYiIjANHzmqMfrsGEZFk0xeNcbCxHWNhSR4ikvosRETGgdN/D6cb7G5DRCSZ9EVjhIIREjI8booqChGR1GchIjJOHDmlJIzEI/TbNYiIJJPm2lYMX8CLiEwPFiIi42TWou9jDPW0MdjdhohIMggFI4SCERIyPG6KKgoRkenBQkRkHDn9lRj9dg0iIsmgubYVwxfwkuFxIyLTg4WIyDhy5JRiDPW0MdjdhojIVBYKRggFIyRkeNwsKslHRKYPCxGRcWS5vDhySrFcXhJOhXcjIjKVNde2YvgCXnwBLyIyfViIiIyzS3NWMxKPkDAQbmCwuw0RkamoLxojFIxgLCrJR0SmFwsRkXGWPqeAtKwCjFPh3YiITEXPP7AHwxfw4gt4EZHpxUJEZAI4/ZUYA+EGRuIRRESmkr5ojFAwglFUUYiITD8WIiITIH1OAWlZBRj9dg0iIlNJc20rhi/gxRfwIiLTj4WIyARx+isxBsINjMQjiIhMBX3RGIcaOzCKKgoRkenJQkRkgqTPKSAtqwCj365BRGQqONjYjpHhceMLeBGR6clCRGQCOeatxhgINyAiMtn6ojH21bZh3Lp5FSIyfVmIiEwgR04plsuL0W9vRURkMoWCEYwMjxtfwIuITF8WIiITbNbC72MMhHcjIjJZ+qIxmmtbMYoqChGR6c1CRGSCpc8pwHJ5SRiJRxgINyAiMhlCwQh90RgJGR43C0vyEJHpzUJEZBI4/ZUkWC4v/XYNIiITrS8a42BjO0ZRRSEiIhYiIpPAkVNKwkg8wkg8wkC4ARGRidQXjREKRkjI8LhZWJKHiIiFiMgkcforMQZ+vxsRkYnUXNtKQobHjS/gRUQkwUJEZJI4/fdgDPW0MdjdhojIRAgFI4SCEYyiikJERBIsREQmkSOnFKPfrkFEZCI017Zi+AJeMjxuREQSLEREJpHTX4kx1NPGYHcbIiLjqS8aIxSMkOFxk+Fxs6gkHxERw0JEZBJZLi+OnFKMU+HdiIiMp+cf2ENCXzSGL+DFF/AiImJYiIhMsktzVmMMhBsYiUcQERkvoWAEY1FJPiIip7OQ8zIyMkJLSwsvvfQSLS0tjIyMcL6Gh4d55ZVXeOmll3jllVcYHh5GZDpLn1NAWlYBRr9dg4jIeHj+gT0YvoAXX8CLiMjpLGTU3n77bYqLiykvL2fjxo2Ul5dTXFzMkSNHGK39+/dzww03sHbtWjZu3MjatWu54YYb2L9/PyLTmdNfiTEQbmAkHkFEZCz1RWMcauzAKKooRETkwyxkVGKxGOvWrePkyZM89thjHD58mG3btnHy5EnWrl3Le++9x7mEw2HWr1+PZVn8+Mc/5p133uHJJ5/EsizuvPNOQqEQItNV+pwC0rIKMPrtGkRExtLBxnaMDI8bX8CLiMiHWcioPPXUU/T09PDAAw+wfPlyHA4HK1euZPPmzRw/fpwnn3ySc/n5z3/OyZMn+fa3v81nP/tZ0tPT+au/+ivuv/9+Tp06RX19PSLTmWPeaoyBcAMiImOlLxpjX20bxq2bVyEiciYWMip79uxh5syZrFy5ktMVFxczc+ZMXn75Zc7lD3/4AwmzZ8/mdFdddRUJ3d3diExnjpxSLJcXYyDcgIjIWAgFIxgZHje+gBcRkTOxkHMaGRnh6NGjXHPNNViWxYctXryYo0ePMjIywkdZtmwZCW+99Ran++Uvf0nCggULEJnunP5KjPcPfhMRkYvVF43RXNuKUVRRiIjI2VjIOcXjcYaHh5k9ezZn4na7GR4eZmBggI9y880386UvfYkdO3ZQWVnJ7t27+eY3v8kjjzzCqlWruO222xCZ7hw5pVguL8ZAuAERkYsRCkboi8ZIyPC4WViSh4jI2VjIOfX29pJw6aWXciYzZswgIRQKcS6rVq0iJyeHl19+mfvuu4/Gxkbmzp3L6tWrsSyL0fL7/fj9fvx+P36/H7/fz7Zt2xBJBU5/JUa/XYOIyIXqi8Y42NiOsbAkDxGRj2Ih5zRz5kxGw7IsPsqzzz7LnXfeyfz589mzZw+2
Nnzx6uvPJK1q5dy1NPPcVo2baNbdvYto1t29i2zYYNGxBJBY6cUk432N2GiMiF6IvGCAUjJGR43BRVFCIi8lEs5Jwuu+wyEk6dOsWZDA0NkTBv3jzOZmRkhOrqaubOncv27dvx+Xwk+Hw+duzYwRVXXMEjjzzC8PAwIgKOnFISRuIR+u0aREQuRHNtK4Yv4EVE5Fws5JycTidpaWmcOHGCMzlx4gRpaWk4nU7O5ve
z3
d
zbXXXovT6eR0M2bMYPHixfT39/PGG28gIjBr0fcxhnraGOxuQ0TkfISCEULBCAkZHjdFFYWIiJyLhYzKggULOHToECMjI5xuZGSEgwcPsmDBAj6K2+0mYXBwkDMZHh4mwel0IiJ/5MgpxTgV3o2IyPlorm3F8AW8ZHjciIici4WMyqpVqzh16hT19fWc
6+nqGhIVatWsVHmT17NvPnz6epqYn
M
5HSxWIyWlhaysrJYsGABIvJHTn8lxkC4gcHuNkRERqMvGiMUjGAsKslHRGQ0LGRU
vtNubPn8/DDz/ME088QUtLC0888QRbtmxh/vz53H
RjBYBC/3095eTmnu
++xkaGuIrX/kKu3fvpqWlhRdeeIGvfOUrHD9+nPvuuw/LshCRP7JcXtKyCjBOhXcjIjIazbWtGL6AF1/Ai4jIaFjIqDgcDn7605+Sn5/PQw89RHl5OQ899BBXX301Tz75JA6Hg3NZvnw5jz/+ODNmzOC+++6jvLycqqoq3n
fWpqarj55psRkT/l9FdiDIQbGIlHEBH5KH3RGIcaOzCKKgoRERktCxm1T37ykzzzzDPs37+fXbt28eq
LMM89w+eWXc7pAIIBt2+zatYsPu/7662lqamLPnj3s2rWLPXv20NzczE033YSI/Ln0OQWkZRVgDIQbEBH5KM21rRi+gBdfwIuIyGhZyHnLzs5m6dKlXH755Vwon8/H0qVL8fl8iMhHc8xbjdFv1yAicjZ90RiHGjswiioKERE5HxYiIlOcI6cUy+XF6Le3IiJyJqFgBCPD48YX8CIicj4sRESSgNNfidFv1yAi8mF90RjNta0Y5T9eg4jI+bIQEUkCjpxSLJcXYyDcgIjI6ULBCH3RGAkZHjcZHjciIufLQkQkSTj9lRj9dg0iIkZfNMbvgmGMoopCREQuhIWISJJw5JRijMQjDIQbEBFJ6IvGONTYQUKGx83CkjxERC6EhYhIEnHklGIM/H43IiIJzbWtGL6AFxGRC2UhIpJEZi36PsZQTxuD3W2IyPQWCkYIBSMkZHjcFFUUIiJyoSxERJKMI6cU41R4NyIyvTXXtmL4Al4yPG5ERC6UhYhIknH6K7FcXhIGwg0MdrchItNTXzRGKBjBWFSSj4jIxbAQEUkylsuL5fRinArvRkSmp+cf2IOxsCQPX8CLiMjFsBARSUJOfyWWy0vCQLiBkXgEEZle+qIxQsEIxqKSfERELpaFiEgSSp9TgOX0YvTbNYjI9NJc24rhC3jxBbyIiFwsCxGRJOWYtxpjINyAiEwffdEYhxo7MIoqChERGQsWIiJJypFTiuXyYvTbWxGR6SEUjGBkeNz4Al5ERMaChYhIEnP6KzH67RpEJPX1RWM8/8AeMjxuEooqChERGSsWIiJJzJFTiuXykmC5vAyEGxCR1BYKRkjoi8bI8LhZWJKHiMhYsRARSXJOfyUJI/EI/XYNIpK6+qIxDja2YywsyUNEZCxZiIgkOUdOKcZIPMJAuAERSU190RihYISEDI+boopCRETGkoWISApw+isxBn6/GxFJTc21rRi+gBcRkbFmISKSApz+ezCGetoY7G5DRFJLKBghFIyQkOFxU1RRiIjIWLMQEUkRTn8lxqnwbkQktTTXtmL4Al4yPG5ERMaahYhIinDklGIMhBsY7G5DRFJDXzRGKBghIcPjZlFJPiIi48FCRCRFWC4vaVkFGEM9bYhIamiubcXI8LjxBbyIiIwHCxGRFOL0V2L02zWMxCOISHLri8Y41NiBUVRRiIjIeLEQEUkh6XMKSMsqwOi3axCR5NZc24rhC3jxBbyIiIwXCxGRFOOYtxpjINzASDyCiCSnvmiMQ40dGEUVhYiIjCcLEZEU48gpJS2rAGMg3ICIJKdQMIKR4XHjC3gRERlPFiIiKcgxbzVGv12DiCSfvmiMg43tGEUVhYiIjDcLEZEU5MgpxXJ5MQbCDYhIcgkFI4SCERIyPG4WluQhIjLeLEREUpTTX4nx/sFvIiLJoy8a42BjO0ZRRSEiIhPBQkQkRTlySrFcXoyBcAMikhz6ojFCwQgJGR43C0vyEBGZCBYiIinMkbMaY+D3uxGR5NBc24rhC3gREZkoFiIiKczpvwdjqKeNwe42RGRqCwUjhIIREjI8bm7dvAoRkYliISKS4pz+Sox+uwYRmdqaa1sxfAEvIiITyUJEJMU5/fdgDPW0MdjdhohMTaFghFAwQkKGx82iknxERCaShZyXkZERWlpaeOmll2hpaWFkZIQLcfToUX75y1/S1NREV1cXIjK+HDmlGKfCuxGRqam5thXDF/DiC3gREZlIFjJqb7/9NsXFxZSXl7Nx40bKy8spLi7myJEjjFZ3dzfl5eXcfPPNbNiwgfXr17N8+XJqamoQkfFzac5qjIFwA4PdbYjI1NIXjREKRjAWleQjIjLRLGRUYrEY69at4+TJkzz22GMcPnyYbdu2cfLkSdauXct7773HuQwPD1NeXs6
77J/fffz+HDh/nFL37Btddey44dO9i9ezciMj7S5xTgyCnFOBXejYhMLc21rRi+gBdfwIuIyESzkFF56qmn6Onp4YEHHmD58uU4HA5WrlzJ5s2bOX78OE8++STn8uyzz/LrX/+ab3/723z1q1/F4XCQm5vLP
zP5OWlsbTTz+NiIyfS3NWYwyEGxiJRxCRqaEvGuNQYwfGrZtXISIyGSxkVPbs2cPMmTNZuXIlpysuLmbmzJm8/PLLnMsLL7xAVlYWt99+O6ebPXs2P/nJT/j2t7+NiIyf9DkFpGUVYPTbNYjI1NBc24rhC3jJ8LgREZkMFnJOIyMjHD16lGuuuQbLsviwxYsXc/ToUUZGRjibkZERDh8+TEFBAZZlMTw8zP79+2lpaWF4eJj
uO6667DhEZX455q7FcXhIGe9oQkcnXF41xqLEDo6iiEBGRyWIh5xSPxxkeHmb27NmcidvtZnh4mIGBAc4mHA4zPDyM2+3m2WefZcmSJdxxxx2Ul5dz3XXX8fzzz3M+/H4/fr8fv9+P3+/H7/ezbds2ROSjOXJKMUbiEfrtrYjI5AoFIxgZHje+gBcRkcmNKUiFAAAgAElEQVRiIefU29tLwqWXXsqZzJgxg4RQKMTZhMNhEpqbm/ne977H2rVrqa2t5aGHHmLWrFn8wz/8Ay+99BKjZds2tm1j2za2bWPbNhs2bEBEzs3pr8Tot2sQkcnTF43RXNuKUVRRiIjIZLKQc5o5cyajYVkWZ/PBBx+Q8O677/Iv
Iv3HXXXRQVFVFaWspzzz1HWloajzzyCCIy/hw5pVguL8ZAuAERmRyhYIS+aIyEDI+bhSV5iIhMJgs5p8suu4yEU6dOcSZDQ0MkzJs3j7NxOBwkeDweli9fzuk++clP8rnPfY4
OEPdHd3IyLjz+mvxHj/4DcRkYnXF41xsLEdo6iiEBGRyWYh5+R0OklLS+PEiROcyYkTJ0hLS8PpdHI2ixYtIuEv
IvOZNZs2aREAqFEJHx58gpxXJ5MQbCDYjIxAoFI4SCERIyPG4WluQhIjLZLGRUFixYwKFDhxgZGeF0IyMjHDx4kAULFvBR0tPT8Xg8tLW1MTIywoe9
77JCxYsAARmRiOnNUY/XYNIjKxDja2Y/gCXkREpgILGZVVq1Zx6tQp6uvrOV19fT1DQ0OsWrWKc/nSl77EyZMnqa+v53TRaJRf/epXLFmyhPT0dERkYjj992CMxCMMdrchIhOjLxqjLxojIcPj5tbNqxARmQosZFRuu+025s+fz8MPP8wTTzxBS0sLTzzxBFu2bGH+/PncdtttGMFgEL/fT3l5OacrLy/nU5/6FJs3b2b79u3s37+fF154gdtvv52E73znO4jIxHL6KzH67RpEZGI8/8Ae+qIxEnwBLyIiU4WFjIrD4eCnP/0p+fn5PPTQQ5SXl/PQQw9x9dVX8+STT+JwODgXt9tNXV0dy5cvZ9u2bdxxxx1UVVWR8KMf/Yi
74aEZlYTv89GEM9bQx2tyEi4ysUjBAKRkjI8LgpqihERGSqsJBR++QnP8kzzzzD/v372bVrF6+++irPPPMMl19+OacLBALYts2uXbv4sDlz5rBjxw4OHDjArl27+MUvfsHevXtZunQpIjI5HDmlGP12DSIyvpprWzF8AS8ZHjciIlOFhZy37Oxsli5dyuWXX86Fuuyyy1i6dCm5ubmIyORy+isxhnraGOxuQ0TGR180RigYISHD42ZRST4iIlOJhYjINGe5vDhySjFOhXcjIuPj+Qf2YGR43PgCXkREphILERHh0pzVGAPhBkbiEURkbPVFY4SCEYyiikJERKYaCxERIX1OAWlZBRj9dg0iMrYONraT4XGT4At48QW8iIhMNRYiIvK/Of2VGAPhBkbiEURkbPRFY+y
aMvGiPD46aoohARkanIQkRE
f0OQWkZRVg9Ns1iMjYaK5tJcPjJiHD48YX8CIiMhVZiIjI/+WYtxpjsKeNkXgEEbk4fdEYhxo76IvGyPC4uXXzKkREpioLERH5vxw5paRlFZAwEo/Qb9cgIhfnYGM7p8vwuBERmaosRETkTzjmrcYYCDcgIheuLxpjX20bxq2bVyEiMpVZiIjIn3DklGK5vBj99lZE5MKEghGMDI8bX8CLiMhUZiEiIn/G6a/EcnlJ6LdrEJHz1xeN0VzbilFUUYiIyFRnISIif8aRU8rpBsINiMj5CQUj9EVjJGR43CwsyUNEZKqzEBGRM3L6KzHeP/hNRGT0+qIxmmtbMYoqChERSQYWIiJyRo6cUiyXF2Mg3ICIjE4oGKEvGiMhw+NmYUkeIiLJwEJERM7K6a/EeP/gNxGRc+uLxjjY2I4v4CWhqKIQEZFkYSEiImflyCnFcnkxBsINiMhHCwUjhIIRQsEIGR43C0vyEBFJFhYiIvKRHDmrMQZ+vxsRObu+aIzfBcMYvoAXEZFkYiEiIh/J6b8HY6injcHuNkTkzELBCIcaO0jwBbzcunkVIiLJxEJERM7J6a/EOBXejYic2e+CYTI8bhJ8AS8iIsnGQkREzsnpvwdjINzAYHcbIvKnQsEIhxo76IvGyPC4KaooREQk2ViIiMioOHJKMfrtGkTkTzXXtmL4Al5ERJKRhYiIjMqsRd/HGOppY7C7DRH5o1AwQigYISHD46aoohARkWRkISIio+bIKcXot2sQkT9qrm0lw+MmwRfwkuFxIyKSjCxERGTUZi36PsZQTxuD3W2ITHehYIRQMEJfNEaGx01RRSEiIsnKQkREzosjpxSj365BZLp
m3F8AW8ZHjciIgkKwsRETkvsxZ9H2Oop43B7jZEpqtQMEIoGCEhw+NmUUk+IiLJzEJERM6bI6cUo9+uQWS6aq5txfAFvPgCXkREkpmFiIicN6e/EmOop43B7jZEpptQMEIoGCEhw+NmUUk+IiLJzkJERM6b5fLiyCnF6LdrEJlummtbMXwBL76AFxGRZGchIiIXxOmvxBjqaWOwuw2R6SIUjBAKRkjI8LhZVJKPiEgqsBARkQtiubw4ckpJyyogod+uQWS6aK5tJSHD48YX8OILeBERSQUWIiJywZz+SoZ62kgY6mljsLsNkVQXCkYIBSMYi0ryERFJFRYiInLBLJcXR04pRr9dg0iqa65txfAFvPgCXkREUoWFiIhcFKe/EmOop43B7jZEUlUoGCEUjJCQ4XGzqCQfEZFUYiEiIhfFcnlx5JRinArvRiRVNde2YvgCXnwBLyIiqcRCzsvIyAgtLS289NJLtLS0MDIywsXo6uqiqamJEydOICLJy+mvxBgINzDY3YZIqgkFI4SCERIyPG4WleQjIpJqLGTU3n77bYqLiykvL2fjxo2Ul5dTXFzMkSNHuFCVlZWsX7+e
iP/0BEkpfl8uLIKcXot2sQSTXNta0YvoAXX8CLiEiqsZBRicVirFu3jpMnT/LYY49x+PBhtm3bxsmTJ1m7di3vvfce52vnzp0cOHAAEUkNTn8lxlBPG4PdbYikilAwQigYISHD42ZRST4iIqnIQkblqaeeoqenhwceeIDly5fjcDhYuXIlmzdv5vjx4zz55JOcjyNHjlBTU0NmZiYikhoslxdHTilGv12DSKporm3F8AW8+AJeRERSkYWMyp49e5g5cyYrV67kdMXFxcycOZOXX36Z0RoYGGDjxo0sXryYL3zhC4hI6nD6KzGGetoY7G5DJNmFghFCwQgJGR43i0ryERFJVRZyTiMjIxw9epR
kGy7L4sMWLF3P06FFGRkYYjX/6p3+iu7ub6upqRCS1WC4vjpxSjH67BpFk11zbiuELePEFvIiIpCoLOad4PM7w8DCzZ8/mTNxuN8PDwwwMDHAuzc3NPP3002zatInLL78cEUk9Tn8lxlBPG4PdbYgkq1AwQigYISHD46aoohARkVRmIefU29tLwqWXXsqZzJgxg4RQKMRHOXHiBPfffz833XQTt9xyCxfD7/fj9/vx+/34/X78fj
tm1DRCaf5fLiyCnF6LdrEElWzbWtGL6AlwyPGxGRVGYh5zRz5kxGw7IsPsp3vvMdZsyYwYMPPsjFsm0b27axbRvbtrFtmw0bNiAiU8OsRd/HGOppY7C7DZFkEwpGCAUjJGR43BRVFCIikuos5Jwuu+wyEk6dOsWZDA0NkTBv3jzO5tlnn2Xfvn08/PDDZGRkICKpz5FTinEqvBuRZHOwsR3DF/CS4XEjIpLqLOScnE4naWlpnDhxgjM5ceIEaWlpOJ1Ozmbfvn0kfOMb38Dv9+P3+/9/9uAHuArCXvv89x4CSQBPzws4tmnUvF47jwspcGiqAe1LeTchd9spI3M9o64d18ztIC1eLe6wTm2H+4qh013YVoYMoFUZAcF3iKXDVJbscAutbQhuXLJoYZ5h797MJM074wuYOcqBcJLj7rndM1JLkX/yL7/PB0m8+uqrFDU3NyOJgYEBQgjXh3HpFZQM9raRP9JJCNeKnq4+urcfpChVlWTOwpmEEMJIkCCck2nTptHd3U2hUOB0hUKB/fv3M23aNM7m7rvvJpPJkMlkyGQyZDIZMpkMf/u3f0vRf/gP/4FMJsOYMWMIIVw/KvUEJce7lxDCtWCgP8vudXspqamrJlWVJIQQRoIE4Zw0NTVx6tQptm7dyum2bt3K0NAQTU1NnM3DDz9MS0sLLS0ttLS00NLSQktLC/X19RQ1NzfT0tLC2LFjCSFcPyr1fRJjqykq5PoY7G0jhKtdT1cfPV19FNXUVTN/WRMhhDBSJAjn5IEHHuDWW2/lxz/+MRs2bKCjo4MNGzbQ0tLC
feygMPPEBJV1cXkmhubiaEEMpv/ntKTngVIVzNBvqz7N/+B4pSVUlSVUlCCGEkSRDOSXl5Oa+88gpTpkxh+fLlNDc3s3z5cr785S+zceNGysvLCSGEM6nU90mMraaokOtjsLeNEK5WPV199HT1UTJ/WRMhhDCSJAjn7Atf+AKbN2/md7/7HevXr+e3v/0tmzdv5qa
uJ0dXV12Gb9+vV8mqVLl2KbWbNmEUK4flXqCUqO719CCFejgf4su9ftpWTOwpmEEMJIkyCctxtvvJFZs2Zx0003EUII56L85vtIjK2mJH+kkxCuNj1dfQz0Z0lVJampq2b6vMmEEMJIkyCEEMJlUaknKPmg40FCuJoM9GfZtrSdooH+LOl5UwghhJEoQQghhMui/Ob7SIytpuSEnyOEq0VPVx8lqaok0+dNJoQQRqIEIYQQLptKPUHJYO
FHJ9hHClDfRn2ba0nZL5y5oIIYSRKkEIIYTLpvzm+yibWE9RIdfHCa8ihCtt97q9lKSqktTUVRNCCCNVghBCCJdVpZ6gZLC3jUKujxCulIH+LN3bD1KUqkoyf1kTIYQwkiUIIYRwWY2eVE/ZxHpKTngVIVwp+7f/gZJUVZKaumpCCGEkSxBCCOGyq9QTlAz2tpE/0kkIl9tAf5Y96zopmbNwJiGEMNIlCCGEcNmNnlRP2cR6Sk54FSFcbtuWtlMyfd5kauqqCSGEkS5BCCGEK2J8egUlQ0c7yR/pJITLpaerj56uPopq6qpJz5tCCCEESBBCCOGKSIytpvzm+yg54VWEcLnsXreXklRVkpq6akIIIUCCEEIIV8y49AoSY6spGjrayWBvGyF81rq3H6Snq4+iVFWSOQtnEkII4U8ShBBCuKLK
57Sk54FSF8lgb6s+xet5eS6fMmk6pKEkII4U8ShBBCuKIq9X0SY6spKuT6OOHnCOGz0tPVR1GqKkmqKsmchTMJIYTwsQQhhBCuuEo9QckJryKEz8JAf5ZtS9sZ6M8y0J9lzsKZhBBC+HMJQgghXHHlN99H2cR6So7vX0IIl9rudXspSVUlmT5vMiGEEP5cghBCCFeFSj1ByWBvG/kjnYRwqQz0Z+nefpCS+cuaCCGE8JcShBBCuCqMnlRP2cR6Sk71vk4Il8q2pe2U1NRVU1NXTQghhL+UIIQQwlVjfHoFJYO9beSPdBLCxerp6qOnq4+imrpq5iycSQghhDNLEEII4aqRGFtN+c33UXLCqwjhYgz0Z9m
Q+UpKqS1NRVE0II4cwShBBCuKqMS6+gZOhoJ4O9bYRwoQb6s3RvP0hRqirJnIUzCSGE8NclCCGEcNUZl15ByfH9SwjhQgz0Z9m2tJ2S6fMmk6pKEkII4a9LEEII4apTfvN9JMZWU3LCzxHC+dq
Q8M9GcpSlUlmbNwJiGEEM4uQQghhKvSuOkrKDnhVRRyfYRwrgb6s+xZ10nJ/GVNhBBC+HQJQgghXJVGT6qnbGI9JR/uX0II52
0nZKauqqqamrJoQQwqdLEEII4ao1Pr2CkqGjneSPdBLCp+np6qOnq4+iVFWSOQtnEkII4dwkCCGEcNVKjK2m/Ob7KDnevYQQzmagP8vudXspqamrpqaumhBCCOcmQQghhKvauPQKSgq5PgZ72wjhr+np6qOnq4+iVFWS+cuaCCGEcO4ShBBCuOqNS6+g5Pj+JRRyfYTwSQP9WbYtbadkzsKZhBBCOD8JQgghXPXKb76Pson1lJzwKkL4pN3r9lKSqkoyfd5kQgghnJ8EIYQQrgmVeoKixNhqBnvbyB/pJISSnq4+urcfpGT+siZCCCGcvwQhhBCuCaMn1VN+830Ucn0UnfAqQiga6M+ye91eSqbPm0xNXTUhhBDOX4IQQgjXjHHpFZQMHe1ksLeNEHq6+ujp6qMoVZVk
ImQgghXJgEIYQQrinj0isoOb5/CYVcH2HkGujPsm1pO6mqJEVzFs4khBDChUsQQgjhmlJ+832UTayn5IRXEUau3ev2UjTQnyVVlWT6vMmEEEK4cAlCCCFccyr1BCWDvW3kj3QSRp6erj66tx+kKFWVZP6yJkIIIVycBOG8FAoFOjo62LFjBx0dHRQKBc5XPp/nN7/5DTt27ODXv/41uVyOEEI4H6Mn1VN+832UHO9eQhhZBvqz7N/+B0pq6qqpqasmhBDCxUkQztk777xDQ0MDzc3NLF68mObmZhoaGjh06BDnqq2tjbvuuosFCxawePFivvvd7/LVr36Vn
854QQwvkYl15BYmw1RYVcHyf8HGHk2L/9D3RvP0hRqirJ/GVNhBBCuHgJwjnJZrM8+uijnDx5khdeeIEDBw6wevVqTp48yYIFC/jwww/5NLt27eKHP/whNTU1vPrqqxw4cIBf/OIXpNNpVq5cyebNmwkhhPMxbvoKSk54FfkjnYTr30B/lj3rOimZv6yJEEIIl0aCcE42bdrE0aNHWbp0KbNnz6a8vJy5c+eybNky3nvvPTZu3MinWbNmDWVlZbz88svU1dVRXl7OlClTeOGFF7jhhht48cUXCSGE8zF6Uj1lE+spOeFVhOvftqXtlNTUVVNTV00IIYRLI0E4J+3t7VRUVDB37lxO19DQQEVFBTt37uTTjBo1invuuYdUKsXpxo4dy1e+8hX++Mc/EkII52t8egWJsdUUFU70MdjbRrh+dW8/SE9XH0WpqiTzlzURQgjh0kkQPlWhUODw4cNMnTqVRCLBJ82YMYPDhw9TKBQ4m61bt/L888/zSYVCgXfffZdx48YRQgjnKzG2mko9QVEh18fx/Uso5PoI15+B/izblrZTMmfhTFJVSUIIIVw6CcKnyuVyDA8PM2HCBM4kmUwyPDzM4OAgF+KVV17hyJEjZDIZzpUkJCEJSUhi9erVhBBGpvKb76NsYj0lH+5fQrj+bFvaTklNXTXT500mhBDCpZUgfKr333+fojFjxnAmo0aNoqinp4fz9ea
7Jy5Uq++MUvsmjRIs6VbWxjG9vY5h
8R8JIYxc49MrKBk62kn+SCfh+tG9/SA9XX0UpaqSzFk4kxBCCJdegvCpKioqOBeJRILzsWvXLr73ve/xuc99jpdffplkMkkIIVyoxNhqKvUEJR90PEi4fmxb2k5RqirJ9HmTqamrJoQQwqWXIHyq8ePHU3Tq1CnOZGhoiKJ
mFc/X888+zaNEi
zxRtra2qipqSGEEC5Wpb5P2cR6SrK/f5Bw7du2tJ3TzVk4kxBCCJ+NBOFTVVZWUlZWxrFjxziTY8eOUVZWRmVlJefi6aef5qc
SnTp0+nra2NqqoqQgjhUqnUE5QMHe0kf6STcO3q3n6Q7u0HKUpVJZm
IkQQgifnQThnEybNo3u7m4KhQKnKxQK7N+/n2nTpnEuHn/8cV5
XUaGxvZsGEDEyZMIIQQLqXRk+qp1BOUfNDxIOHaNNCfZfe6vZRMnzeZmrpqQgghfHYShHPS1NTEqVOn2Lp1K6fbunUrQ0NDNDU18WnWrl1Le3s73/zmN2ltbaW8vJwQQvgsVOr7lE2sp+T4/iWEa8+2pe0M9GcpSlUlmbNwJiGEED5bCcI5eeCBB7j11lv58Y9/zIYNG+jo6GDDhg20tLRw66238sADD1DS1dWFJJqbmyk5duwYa9asoejkyZM8+eSTPPnkkzz55JM8+eSTPPnkkzz55JMMDw8TQgiXwvj0CkoGe9vIH+kkXDu6tx+kp6uPVFWSVFWS+cuaCCGE8NlLEM5JeXk5r7zyClOmTGH58uU0NzezfPlyvvzlL7Nx40bKy8s5m7feeotTp05R9M
M+88cYbvPHGG7zxxhu88cYbvPHGG7zxxhsUCgVCCOFSSIytZlx6BWUT6yn6oONBCrk+wtVvoD/LtqXtpKqSDPRnmT5vMjV11YQQQvjsJQjn7Atf+AKbN2/md7/7HevXr+e3v/0tmzdv5qa
uJ0dXV12Gb9+vWU/N3f/R22sY1tbGMb29jGNrYZPXo0IYRwqZTffB+n+3D/EsLVb9vSdooG+rPU1FUzZ+FMQgghXB4Jwnm78cYbmTVrFjfddBMhhHC1G59eQcnQ0U5O+DnC1at7+0F6uvooSlUlmb+siRBCCJdPghBCCNe1xNhqbpi1hZITXkX+SCfh6jPQn2Xb0nZK5iycSaoqSQghhMsnQQghhOve6En1lE2sp+R49xLC1WWgP8v672ylZPq8yUyfN5kQQgiXV4IQQggjQvLuLZRNrKeokOvj+P4lhKvH/u1/YKA/S1GqKsn8ZU2EEEK4/BKEEEIYMSr1BCWDvW3kj3QS
yerj66tx+kKFWVZP6yJkIIIVwZCUIIIYwYoyfVU6knKPmg40HyRzoJV85Af5ZtS9sZ6M9SNH3eZGrqqgkhhHBlJAghhDCiVOr7lE2sp+SEVxGujIH+LNuWtjPQn6Vo+rzJzFk4kxBCCFdOghBCCCNO8u4tJMZWUzR0tJPj+5cQL
92/9AT1cfRamqJHMWziSEEMKVlSCEEMKING76CkoGe9vIH+kkXD7d2w+yZ10nRamqJPOXNZGqShJCCOHKShBCCGFEGj2pnnHpFZR80PEg+SOdhM/eQH+WbUvbKZk+bzI1ddWEEEK48hKEEEIYscpvvo+yifWUHO9eQvhsDfRnWf+drZR8fWE9cxbOJIQQwtUhQQghhBEtefcWyibWkxhbTSHXR
3DxI+GwP9WbYtbWegP0tRqirJnIUzCSGEcPVIEEIIYcQbn15BIddH0dDRTk74OcKlt3/7H+jp6qMoVZWk+cUMIYQQri4JQgghjHiJsdXcMGsLJSe8ivyRTsKl0739IHvWdVKUqkoyf1kTqaokIYQQri4JQgghhP/P6En13DBrCyUfdDxI/kgn4eIN9GfZtrSdkunzJlNTV00IIYSrT4IQQgjh/zd6Uj3lN99HyfHuJeSPdBIu3EB/lvXf2UrJ1xfWM2fhTEIIIVydEoQQQginGZdeQfnN95EYW00h18fx7iWECzPQn2X9d7Yy0J+laPq8ycxZOJMQQghXrwQhhBDCJ4xLr2D0xHqKCrk+sr9/kHB+BvqzbFvazkB/lqJUVZL5y5oIIYRwdUsQQgghnEGlniAxtpqioaOdZH
IOHc7d/+B3q6+ihKVSVpfjFDCCGEq1+CEEII4QwSY6tJztpCydDRTo7vX0L4dLvX7WXPuk6KUlVJml/MkKpKEkII4eqXIIQQQvgrEmOruWHWFkoGe9s44ecIf93udXvZs66TolRVkvnLmkhVJQkhhHBtSBBCCCGcxehJ9dwwawslJ7yKwd42wl/avW4ve9Z1UpSqSjJ/WRM1ddWEEEK4diQIIYQQPsXoSfXcMGsLJcf3L2Gwt43wsd3r9rJnXSdFqaok0+dNpqaumhBCCNeWBCGEEMI5GD2pnhtmbaEoMbaa4/uXMNjbRoDd6/ayZ10nRamqJNPnTWbOwpmEEEK49iQIIYQQztHoSfXcMGsLhVwfRcf3L2Gwt42RbPe6vexZ10mqKklNXTVzFs5kzsKZhBBCuDYlCCGEEM7D6En13DBrCyXH9y/hhJ9jJNq9bi/d2w9SUlNXzfR5kwkhhHDtShBCCCGcp9GT6rlh1hYSY6spOuFVnPBzjBQD/Vm6tx9kz7pOBvqzpKqSTJ83mTkLZxJCCOHaliCEEEK4AKMn1TNu+gpKBntfJ/v7B7neDfRn2b1uL9uWtlOUqkoyZ+FM5iycSQghhGtfghBCCOECjZ5Uzw2ztlBUyPUxdLSTgV1fo5Dr43o00J9l/Xe20r39IEU1ddXMX9bE9HmTCSGEcH1IEEIIIVyE0ZPqSTW8SUkh10e240HyRzq5nvR09fGzb7zEQH+WVFWSVFWS+cuaqKmrJoQQwvUjQQghhHCREmOrSTW8SdnEeooKuT4+6HiQE36Oa91Af5bd6/ay/jtbKUlVJVm84x9IVSUJIYRwfUkQQgghXAKJsdUk795C2cR6Sk54FdnfP8i1aqA/y+51e9mzrpNUVZKi6fMm0/xihhBCCNenBCGEEMIllLx7C5V6gpLCiT4Gdn2N/JFOriXd2w/ys2+8RPf2g5R8fWE985c1EUII4fqVIIQQQrjEKvV9bpi1haJCro9Cro8POh4k+/sHudoN9GfZvW4v25a2U5KqSjJn4UzmLJxJCCGE61uCEEII4TMwelI9qYY3KZtYT8nQ0U4Gdn2NE36Oq81Af5bd6
ys2+8RPf2g5SkqpI0v5hh+rzJhBBCuP4lCJdVoVCgo6ODHTt20NHRQaFQIFx+q1evJlyc1atXEy7e6tWruZ4lxlaTvHsLlXqCkkKujxNexcCur5E/0snF+pv/8ddcrIH+LOu/s5U96zpJVSUZ6M+Sqkry9YX1LN7xD6SqklzPVq9eTbh4q1evJlyc1atXEy7O6tWrCRcnQbhs3nnnHRoaGmhubmbx4sU0NzfT0NDAoUOHCJdXa2sr4eK0trYSLl5raysjQaW+T6rhTcom1lNSyPXxQceDDOz6GvkjnVwJA/1Z1n9nK+u/s5WB/iwlqaokzS9mmLNwJiNBa2sr4eK1trYSLk5rayvh4rS2thIuToJwWWSzWR599FFOnjzJCy+8wIEDB1i9ejUnT55kwYIFfPjhh4QQwvUsMbaa5N1bqNQTnK6Q6+N49xIGdn2Nwd42Ps2cNf8ne/7lfc6k59hJml87xNkM9Gfp3n6Q9d/Zys++8RI9XX0M9GcpSgNMbG0AACAASURBVFUlmT5vMot3/AOpqiQhhBBGngThsti0aRNHjx5l6dKlzJ49m/LycubOncuyZct477332LhxIyGEMBJU6vukGt7khllbKCnk+ijk+jjhVQzs+hon/Bz5I52cyfoHJtP82iH2/Mv7nK7n2EmaXzvIP83995zJQH+W3ev28rNvvMS2pe30dPVRkqpK8vWF9Sze8Q/MWTiTEEIII1eCcFm0t7dTUVHB3LlzOV1DQwMVFRXs3LmTEEIYKRJjqxk9qZ5Uw5tU6glKCrk+Crk+TngVH3Q8yMCur3HCzzHY20b+SCdFNRMq2P3dGTS/dog9
I+RT3HTtL82kHWPzCZmgkVFA30Z+nefpBtS9v5p+k/42ffeIk96zo5XaoqyfR5k2l+McOchTMJIYQQEoTPXKFQ4PDhw0ydOpVEIsEnzZgxg8OHD1MoFAghhJEkMbaaSn2fVMObVOoJEmOrOV0h18cJr+L4/iV80PEg2d8/SPb3DzLhUDM7/uNvObT3f+ahj97mPy3535h3sJf9z/2G9d/Zys++8RI/+8ZLbFvaTvf2g5wuVZUkVZXk6wvraX4xw/xlTaSqkoQQQghFCcJnLpfLMTw8zIQJEziTZDLJ8PAwg4ODnIs777wTSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIYkiSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIYkiSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJFElCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlI4r9J/7dMn7eWuxa9x6J1Zbz4v4/idP/l
+haOhoJ0NHOxk62slN
V57k/+Z/77j97m1rd7GPjd/0P39oN0v/seA/1ZPun4Rx/wr8PmF/+6iXX/8r+w8GePcNecryIJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhiSJJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUkUSUISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUkUSUISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUnceeedhIuTIHzm3n
fYrGjBnDmYwaNYqinp4ezsXGjRuxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGN
ZsuMw/1P
82Eef/KDbO2MC69gptvv4uyifUkxlZzusTYaj4pdfIUqaokNXXVpKqSTJ83meYXM6z8v5ay4Z11vHloN7axjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG9vYxja2sY1tbGMb29jGNhs3biRcnAThM1dRUcG5SCQShBBC+NjoSfWU33wfybu3kLx7C8lZW7hh1hb+663P8p+z91N+89+z+W++wtcX1vPKjL/l3/0Pd9L8YobmFzM0v5hh8Y5/YP6yJmrqqgkhhBDORYLwmRs/fjxFp06d4kyGhoYouuWWWwghhPDXJcZW88fEdBb+fjL/3Tf+E5X6Pq/+zVeYs3Ame1bOZVXub+j5d+NIVSUJIYQQLkSC8Jm
KykrKyMY8eOcSbHjh2jrKyMyspKQgghnN0
8d/Yf0Dk6mZUMHpaiZUsPu7M3im/V8JIYQQLlSCcFlMmzaN7u5uCoUCpysUCuzfv59p06YRQgjh0/1T07+nZkIFZ1IzoYLd35tBCCGEcKEShMuiqamJU6dOsXXrVk63detWhoaGaGpqIoQQQgghhHBlJQiXxQMPPMCtt97Kj3/8YzZs2EBHRwcbNmygpaWFW2+9lQceeIAQQgjn76P/9T8SQgghXCoJwmVRXl7OK6+8wpQpU1i+fDnNzc0sX76cL3/5y2zcuJHy8nJCCCGEEEIIV1aCcNl84QtfYPPmzfzud79j/fr1/Pa3v2Xz5s3cdNNNhBBCCCGEEK68BOGyu/HGG5k1axY33XQTIYQQQgghhKtHghBCCCGEEEII/yZBCCGEEEIIIYR/kyCEEEIIIYQQwr9JEEIIIYQQQgjh3yQI16R8Ps9vfvMbduzYwa9
WtyuRzhzDo6Oujt7eV8DA8Pk8vlyOVy5HI5crkcuVyOXC7H4OAg4cw6Ojro7e0lfKxQKNDR0cGOHTvo6OigUChwPoaHh8nlcuRyOXK5HLlcjlwuRy6XY3BwkJGsUCjQ0dHBjh076OjooFAoEP5coVCgo6ODHTt20NHRQaFQ4HwMDw+Ty+XI5XLkcjlyuRy5XI5cLsfg4CDhz3V0dNDb20s4u46ODnp7ezkfw8PD5HI5crkcuVyOXC5HLpcjl8sxODhIgHw+z29+8xt27NjBr3/9a3K5HOHCJAjXnLa2Nu666y4WLFjA4sWL+e53v8tXv/pVfv7znxP+3L59+2hubmbfvn2cj2eeeYZ0Ok06nSadTpNOp0mn06TTaX7wgx8Q/tK+fftobm5m3759hD955513aGhooLm5mcWLF9Pc3ExDQwOHDh3iXD3zzDOk02nS6TTpdJp0Ok06nSadTvODH/yAkeqdd96hoaGB5uZmFi9eTHNzMw0NDRw6dIjwJ++88w4NDQ00NzezePFimpubaWho4NChQ5yrZ555hnQ6TTqdJp1Ok06nSafTpNNpfvCDHxA+tm/fPpqbm9m3bx/hr9u3bx/Nzc3s27eP8/HMM8+QTqdJp9Ok02nS6TTpdJp0Os0PfvADRrq2tjbuuusuFixYwOLFi/nud7/LV7/6VX7+858Tzl+CcE3ZtWsXP/zhD6mpqeHVV1/lwIED/OIXvyCdTrNy5Uo2b95M+JO33nqLRYsWcSF6e3sZM2YMmUyGTCZDJpMhk8mQyWS46667CH/u
feYtGiRYSPZbNZHn30UU6ePMkLL7zAgQMHWL16NSdPnmTBggV8+OGHnIve3l7GjBlDJpMhk8mQyWTIZDJkMhnuuusuRqJsNsujjz7KyZMneeGFFzhw4ACrV6/m5MmTLFiwgA8
JCRLpvN8uijj3Ly5EleeOEFDhw4wOrVqzl58iQLFizgww8/5Fz09vYyZswYMpkMmUyGTCZDJpMhk8lw1113Ef7k
feYtGiRYSze+utt1i0aBEXore3lzFjxpDJZMhkMmQyGTKZDJlMhrvuuouRbNeuXfzwhz+kpqaGV199lQMHDvCLX/yCdDrNypUr2bx5M+H8JAjXlDVr1lBWVsbLL79MXV0d5eXlTJkyhRdeeIE
iBF198kZEun8+zZs0aHnnkEQYHB7kQXV1d1NfX09LSQktLCy0tLbS0tNDS0sL9999P+JN8Ps+aNWt45JFHGBwcJHxs06ZNHD16lKVLlzJ79mzKy8uZO3cuy5Yt47333mPjxo2ci66uLu
62lpaaGlpYWWlhZaWlpoaWnh/vvvZyTatGkTR48eZenSpcyePZvy8nLmzp3LsmXLeO+999i4cSMj3aZNmzh69ChLly5l9uzZlJeXM3fuXJYtW8Z7773Hxo0bORddXV3U19fT0tJCS0sLLS0ttLS00NLSwv33389Il8/nWbNmDY888giDg4OEM8vn86xZs4ZHHnmEwcFBLkRXVxf19fW0tLTQ0tJCS0sLLS0ttLS0cP/99zOSrVmzhrKyMl5++WXq6uooLy9nypQpvPDCC9xwww28+OKLhPOTIFxTRo0axT333EMqleJ0Y8eO5Stf+Qp
OMfGekee+wxVq1axezZs/nRj37E+ert7eXUqVPcfvvthLN77LHHWLVqFbNnz+ZHP/oR4WPt7e1UVFQwd+5cTtfQ0EBFRQU7d+7k0/T29nLq1Cluv/12wsfa29upqKhg7ty5nK6hoYGKigp27tzJSNfe3k5FRQVz587ldA0NDVRUVLBz504+TW9vL6dOneL2228nnNljjz3GqlWrmD17Nj/60Y8IZ
YY4+xatUqZs+ezY9+9CPOV29vL6dOneL2228n/KVRo0Zxzz33kEqlON3YsWP5yle+wh
+EfC+UkQrilbt27l+eef55MKhQLvvvsu48aNY6S74447eOmll1i7di0TJ07kfB06dIiidDpNV1cXmzZt4vXXX+fQoUOEP3fHHXfw0ksvsXbtWiZOnEj4k0KhwOHDh5k6dSqJRIJPmjFjBocPH6ZQKHA2hw4doiidTtPV1cWmTZt4/fXXOXToECNVoVDg8OHDTJ06lUQiwSfNmDGDw4cPUygUGKkKhQKHDx9m6tSpJBIJPmnGjBkcPnyYQqHA2Rw6dIiidDpNV1cXmzZt4vXXX+fQoUOEP7njjjt46aWXWLt2LRMnTiSc2R133MFLL73E2rVrmThxIufr0KFDFKXTabq6uti0aROvv/46hw4dIsDWrVt5/vnn+aRCocC7777LuHHjCOcnQbguvPLKKxw5coRMJsNIt3jxYu655x4u1IEDByhavnw5Dz30EM8++yxPP/009957L0899RTDw8OEP1m8eDH33HMP4c/lcjmGh4eZMGECZ5JMJhkeHmZwcJCzOXDgAEXLly/noYce4tlnn+Xpp5/m3nvv5amnnmJ4eJiRJpfLMTw8zIQJEziTZDLJ8PAwg4ODjFS5XI7h4WEmTJjAmSSTSYaHhxkcHORsDhw4QNHy5ct56KGHePbZZ3n66ae59957eeqppxgeHmakW7x4Mffccw/h7BYvXsw999zDhTpw4ABFy5cv56GHHuLZZ5/l6aef5t577+Wpp55ieHiY8JdeeeUVjhw5QiaTIZyfBOGa9+a
7Jy5Uq++MUvsmjRIsLF6enpoWjy5Mn86le/4t133+W1115j6tSp/PKXv+QnP/kJIZzN+++/T9GYMWM4k1GjRlHU09PD2fT09FA0efJkfvWrX/Huu+/y2muvMXXqVH75y1/yk5/8hJHm/fffp2jMmDGcyahRoyjq6elhpH
fcpGjNmDGcyatQoinp6ejibnp4eiiZPnsyvfvUr3n33XV577TWmTp3KL3/5S37yk58QwuXQ09ND0eTJk/nVr37Fu+++y2uvvcbUqVP55S9/yU9+8hPCn3vzzTdZuXIlX/ziF1m0aBHh/CQIV5VCoUA+nyefz5PP58nn8+Tzef6aXbt28b3vfY/Pfe5zvPzyyySTSa53hUKBfD5PPp8nn8+Tz+fJ5/NcKg8
DArV65k7dq1fOlLX2L06NGk02nWr1/PxIkT2bx5M9lslutdoVAgn8+Tz+fJ5/Pk83ny+TzhY4VCgXw+Tz6fJ5/Pk8/nyefzVFRUcC4SiQRn8/DDD7Ny5UrWrl3Ll770JUaPHk06nWb9+vVMnDiRzZs3k81mGUkqKio4F4lEgpGqoqKCc5FIJDibhx9+mJUrV7J27Vq+9KUvMXr0aNLpNOvXr2fixIls3ryZbDZLCJ+1hx9+mJUrV7J27Vq+9KUvMXr0aNLpNOvXr2fixIls3ryZbDZL+JNdu3bxve99j8997nO8/PLLJJNJwvlJEK4qO3fupLa2ltraWmpra6mtraW2tpYzef7551m0aBE33ngjbW1t1NTUMBLs3LmT2tpaamtrqa2tpba2ltraWi6VO++8k29961t80vjx47n77rsZGhri7bff5nq3c+dOamtrqa2tpba2ltraWmprawkf27lzJ7W1tdTW1lJbW0ttbS21tbWMHz+eolOnTnEmQ0NDFN1yyy2czZ133sm3vvUtPmn8+PHcfffdDA0N8f
zOSjB8/nqJTp05xJkNDQxTdcsstjFTjx4+n6NSpU5zJ0NAQRbfccgtnc+edd/Ktb32LTxo/fjx33303Q0NDvP3224TwWbvzzjv51re+xSeNHz+eu+++m6GhId5++20CPP/88yxatIg
7yRtrY2ampqCOcvQbiqfP7zn6exsZHGxkYaGxtpbGyksbGRT3r66af56U9/yvTp02lra6OqqoqR4vOf/zyNjY00NjbS2NhIY2MjjY2NXA7l5eUUffTRR1zvPv/5z9PY2EhjYyONjY00NjbS2NhI+NjnP/95GhsbaWxspLGxkcbGRhobG6msrKSsrIxjx45xJseOHaOsrIzKykouVHl5OUUfffQRI0llZSVlZWUcO3aMMzl27BhlZWVUVlYyUlVWVlJWVsaxY8c4k2PHjlFWVkZlZSUXqry8nKKPPvqIEK6k8vJyij766CNGuqeffpqf/vSnTJ8+nba2NqqqqggXJkG4qsyYMYPW1lZaW1tpbW2ltbWV1tZWTvf444/z+uuv09jYyIYNG5gwYQIjyYwZM2htbaW1tZXW1lZaW1tpbW3lUsjn83z729/m8ccf50yOHTtG0W233cb1bsaMGbS2ttLa2kprayutra20trYSPjZjxgxaW1tpbW2ltbWV1tZWWltbKZo2bRrd3d0UCgVOVygU2L9/P9OmTeNs8vk83/72t3n88cc5k2PHjlF02223MdJMmzaN7u5uCoUCpysUCuzfv59p06Yx0k2bNo3u7m4KhQKnKxQK7N+/n2nTpnE2+Xyeb3/72zz++OOcybFjxyi67
COGzlM/n+fa3v83jjz/OmRw7doyi2267jZHs8ccf5/XXX6exsZENGzYwYcIEwoVLEK4pa9eupb29nW9+85u0trZSXl5OuHRGjx5Nf38/u3btoqenh9MdPnyYPXv2MGXKFGpqagjhbJqamjh16hRbt27ldFu3bmVoaIimpibOZvTo0fT397Nr1y56eno43eHDh9mzZw9TpkyhpqaGkaapqYlTp06xdev/2x78hLZZNwAc
LMNorgRUPoQVKKNYWSW/GQc2gH4kHoIbcQPIgVBJ+h1BaxYtOC6EE7NsYOD00glxZK1McqbHSEksPsjoI/dtkurXjYRYRSl/KyiLx9h75z9f1D6Pfz2eCkjY0N7t+/z8zMDGfdzMwMR0dHbGxscNLGxgb3799nZmaGf2doaIj9/X2uXbvGnTt3OOn27dvcuHGDyclJRkdHkf6bhoaG2N/f59q1a9y5c4eTbt++zY0bN5icnGR0dJSz6vLly3z77be8/PLLXLx4kUwmg/6eCA2Me/fucenSJR44PDwkjmPiOCaOY+I4Jo5j4jim1+uhR9vb26NQKFCr1ThpYWGBXq9HtVpla2uL
fL5uYm1WqV4eFhVldXkR6lUqmQz+dZWVmh0WjQ7XZpNBosLy+Tz+epVCr8bm9vj0KhQK1W46SFhQV6vR7VapWtrS263S6bm5tUq1WGh4dZXV3lLKpUKuTzeVZWVmg0GnS7XRqNBsvLy+TzeSqVCmddpVIhn8+zsrJCo9Gg2+3SaDRYXl4mn89TqVT43d7eHoVCgVqtxkkLCwv0ej2q1SpbW1t0u102NzepVqsMDw+zurqK9J+0t7dHoVCgVqtx0sLCAr1ej2q1ytbWFt1ul83NTarVKsPDw6yurnJW3bt3j0uXLvHA4eEhcRwTxzFxHBPHMXEcE8cxvV4P/XURGhg3b97k6OiIB65fv06apqRpSpqmpGlKmqakacrx8TE6vXK5zNraGlEUMT8/T61WY3FxkWw2S7PZpFAoID1KJpNhfX2dyclJ6vU6tVqNer1OsVik2WySyWR4lHK5zNraGlEUMT8/T61WY3FxkWw2S7PZpFAocBZlMhnW19eZnJykXq9Tq9Wo1+sUi0WazSaZTIazLpPJsL6+zuTkJPV6nVqtRr1ep1gs0mw2yWQyPEq5XGZtbY0oipifn6dWq7G4uEg2m6XZbFIoFJD+F8rlMmtra0RRxPz8PLVajcXFRbLZLM1mk0KhwFl18+ZNjo6OeOD69eukaUqapqRpSpqmpGlKmqYcHx+jvy5CA+P8+fOEEAghEEIghEAIgRACIQRCCIQQGBoaQr8pl8uEEJidneVhU1NThBBIkoSHTU9Ps7Ozw
2NkmS0Ol0aLfbFItF9MfK5TIhBGZnZ9FvRkZGaLVa7O7ukiQJnU6HVqtFLpfjpKmpKUIIJEnCw6anp9nZ2WF7e5skSeh0OrT
YrFImfZyMgIrVaL3d1dkiSh0+nQarXI5XLoNyMjI7RaLXZ3d0mShE6nQ6vVIpfLcdLU1BQhBJIk4WHT09Ps7Oywvb1NkiR0Oh3a7TbFYhH9q3K5TAiB2dlZ9OfK5TIhBGZnZ3nY1NQUIQSSJOFh09PT7OzssL29TZIkdDod2u02xWKRs+z8+fOEEAghEEIghEAIgRACIQRCCIQQGBoaQn9dhKQ/NTY2RqlUIpfLIZ1WNpulVCqRy+U4
GxMUqlErlcDv1TNpulVCqRy+XQH8tms5RKJXK5HKc1NjZGqVQil8sh/T+NjY1RKpXI5XJI/y0RkiRJkqS+CEmSJElSX4QkSZIkqS9CkiRJktQXIUmSJEnqi5AkSZIk9UVIkiRJkvoiJEmSJEl9EZIkSZKkvghJkiRJUl+EJEmSJKkvQpIkSZLUFyFJkiRJ6ouQJEmSJPVFSJIkSZL6IiRJkiRJfRGSJA2Q/f192u027XabP/L111/T
c5ODhAkqTHFSFJ0gB59tlnuXLlCu+++y5Xr17lpM3NTd5++22uXr3Kc889hyRJjytCkqQBkslk+Oyzzzh37hyff/45d+/e5YG7d+/y0Ucf8dRTT3Hx4kWGhoaQJOlxRUiSNGDGx8e5cOECR0dHvPfeexwfH/PWW29xeHjIBx98wOjoKJIknUaEJEkD6LXXXuOll17i1q1bzM7O8sMPP/DKK6/w6quvIknSaUVIkjSgPv74Y5555hm+
57nn/+eZaWlpAk6e+IkCRpQD399NM8+eSTPPD
79yfHyMJEl/R4QkSQPq/fff56effmJ8fJwff/yRpaUlJEn6OyIkSRpA7Xa
775homJCb744gsmJiZI05SvvvoKSZJOK0KSpAFzcHDAhx9+yBNPPMGnn35KFEV88sknnDt3jqWlJQ4ODpAk6TQiJEkaMBcuXOCXX37hzTff5IUXXuCB8fFx5ubm+Pnnn3nnnXeQJOk0IiRJGiBXrlzh1q1bTExMMDc3x0lzc3O8+OKLfPfdd1y+fBlJkh5XhCRJA+T1118nhEC73eZhURTx5ZdfEkLgjTfeQJKkxxUhSZIkSeqLkCRJkiT1RUiSJEmS+iIkSZIkSX0RkiRJkqS+CEmSJElSX4QkSZIkqS9CkiRJktQXIUmSB3vNJAAAAAlJREFUJEnq+wcvW5z2M8i
wAAAABJRU5ErkJggg== 560 420 18 19 18 39 40 figure 4c3cdf34-276d-426f-8981-d3251db459f3...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here