Great Deal! Get Instant $10 FREE in Account on First Order + 10% Cashback on Every Order Order Now

1 Use the Laplace Transform to solve the following system of DE dx/dt=x+4*y , dy/dt=4*x+y, x(0)=-1 ,y(0)=0 2. Same as in (1) for dx/dt=x-3*y, dy/dt=-3*x+y , x(0)=-1, y(0)=-1 3. Solve...

1 answer below »
1 Use the Laplace Transform to solve the following system of DE
dx/dt=x+4*y , dy/dt=4*x+y, x(0)=-1 ,y(0)=0
2. Same as in (1) for
dx/dt=x-3*y, dy/dt=-3*x+y , x(0)=-1, y(0)=-1
3. Solve y''+2*y'+2*y=delta(t) ,y(0)=0, y'(0)=0
(OPTIONAL: y(0)=0, y'(0)=1)
4. Solve numerically
y'= 2*x+x*y+y^2 , y(0)=1 on [0,1] with step size h=1/3.

(Plz refer to the lecture notes, solve problems step by step using the same way as stated in the lecture notes)
Answered Same Day Dec 26, 2021

Solution

David answered on Dec 26 2021
127 Votes
 
 
 
 
   
       
     
 
   
1
4
4
0 1
0 0
Apply the Laplace transformation to the first part,
4
4
0 4
1 1 4
1 1
4
Apply the Laplace transformation to the second part,
dx
x y
dt
dy
x y
dt
x
y
L L x y
L L x L y
s L x x L x L y
s L x L y
s L x
L y
x
x
ï‚·
ï‚·
 
 
 

 
  
 
 
  
 
  
  
 

 
       
4
0 4
L L x y
s L y y L x L y
y
 
  
 
  

     
 
   
 
       
       
2
1 0 4
1 1
1 4
4
1 1 1 16
1 1 16
s L y L x
s L x
s L x
s s L x L x
s L x s L x
  
  
  
 
     
   

       
     
2
2
1 16 1
1 16 1
s L x L x s
s L x s
    
     
 

 
 
 
 
 
 
 
     
   
 
 
     
   
 
 
    
 
   
2
2
2
2
1
1 16
cosh 4
4 1
And plugging in 1 4
1
4 1
1 4
1
1 16 4
1 16 4
4
1 16
sinh 4
sinh 4
Therefore,
cosh 4 and sinh 4
t
t
t
t t
s
L x
s
x e t
L y
L x s L y L x
s
L y
s L y
s
s L y L y
s L y
L y
s
L y L e t
y e t
x e t y e t

 
  
 
 

  

 
   
 
  
    
...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here